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1. 1 Introduction

To understand and investigate human postural control, a specially designed robot, PostuRob II, is
constructed at the Neurocenter of the clinics of Freiburg University. Biological control concepts
can be embodied in this robot so that it serves in establishing a hardware-in-the-loop simulation
environment. MATLAB and Simulink can then be used to interact with the robot through x-PC
target modality. Furthermore, the robot can serve as a test bed for alternative technical control
approached.

The robot resembles a simplified version of the human body such that it consists of three rigid
bodies: a foot, a leg and a torso. The robot stands freely on a movable Stewart-like platform which
enables for small rotations and translations in the three dimensional space. However, since the robot
is constructed in such a way that its links can move (rotate) only in the sagittal plane, only one
rotation and one translation of the platform become relevant.

PostuRob II is equipped with pneumatic actuators arranged in pairs to generate necessary
torque to actuate the joints. The first set of these actuators is inserted between the foot and the leg to
cause a relative rotation of the leg with respect to the foot while the second set is inserted between
the leg and the torso to cause a relative motion of the torso with respect to the leg.

A set of sensors are used to capture information about the state of the robot and to be used for
the control loop. First, the foot is supplied with two normal reaction force sensors for measuring the
reaction forces between the foot and the platform. These sensors are located at the frontal and rear
parts of the foot. The force measurements provide information about the Center of Pressure (COP)
shift. Second, the relative motion of the three rigid bodies is measured by a set of three
potentiometers (for measuring the relative angles) and three tachometers (for measuring the relative
velocities). Third, an artificial vestibular system composed of an accelerometer and a gyrometer
provides information about the translation acceleration (two components) and angular velocity of

the head.
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1.2 Lagrange’s Approach

Lagrange’s approach is used to derive the nonlinear equations that describe the motion of PostuRob

IT at each of its generalized coordinates. The basic formula of Lagrange’s equation is:

j—t(%]—%wn n
Where:
- L: the lagrangian term, such that:
L=T-U

T: the total kinetic energy of the system.

U: the total potential energy of the system.

- Qn: Forces and torques that act in each coordinate including the non-conservative forces
due to Coulomb friction and viscous damping.

- i ...Qn: the generalized coordinates that describe system’s motion.
Where a set of (n) generalized coordinates are needed to describe the motion of an n-

degree-of-freedom system.

In the upcoming section this methodology will be followed to derive the mathematical model for

the postural robot “PostuRob II”.
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1.3 Model Derivation

The mathematical model of the system consists of four second-order nonlinear differential
equations, these equations are derived using Lagrange’s approach explained earlier. The model is
first derived based on the absolute definition of the angles, and then the relative equivalent of those
absolute angles is substituted. Based on Fig. 1, the total kinetic and potential energies of the system

can be found as follows:

-

Motion in { X ) direction

Figure 1: Free-Body Diagram of PostuRob II . The geometrical parameters are

llz\/(Ll—hl)2+w12 I, =\lh,’ 4w’ I, =h’+w}
— -1(w _ 1w _ -1 W,
¢, = tan (/(Ll_hl)j ¢, = tan ( /hz) ¢, = tan ( AJ

For simplicity, the Lagrnage’s approach is first applied to the system using absolute angles, that is

link angles measured with respect to the absolute vertical. Later on, the relative angles, that is link
angles measured with respect to each other, are substituted in the obtained equations to obtain the

desired version of the dynamic model. The relation between absolute (8,,, 8, and 6,,) and relative

a®

angles 0,and 0, ) is as follows:
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6, =6, ()

0, =6,+6, 3)
0,, =6, +6, +06, )

Then, in the final results, each absolute angle is substituted by its relative equivalents according to
the equations above.

The total kinetic energy of the system is the sum of those energies for each of the system
components, i.e. kinetic energy for the foot, in addition to that for the leg and torso.

T :Tfoot +Tleg +Ttarsa (5)

In more details:

. : 2, 1
T = %Ilelz +%mlv12 +%12922a +%m2\/22 +%I3932a +Em3v32 (6)

As Eq. (6) indicates, the kinetic energy of each link (the foot, leg and torso) is due to its center of
gravity translational and angular velocities. That translational velocity consists of two components,

horizontal and vertical. These components are derived referring to Fig. 2 as follows:

y-axis,

X-axis

Figure 2 Center of mass displacement for each link

For the foot:
X=X +ZISin(¢l_01) (7)

y,=—1,cos(¢,—6,) (8)
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Thus:

vi=x2+yZ=x2-2x6 cos(¢,—6,)+16; 9)
For the leg:
x,=x +1[,sin(6,, +¢,) (10)
y,=1,c08(0,, +9,) (1)
Thus:
2 .2 22 .2 - A 242
vV, =X,+y,=x"+2x0,,1,cos(0,, +¢,)+1,0;, (12)
For the torso:
x,=x +L,sin(0,,)+/,sin(8,, +¢,) (13)
y;=1L, COS(92H)+I3 cos(0;, +¢;) (14)

Thus:
vi=xl+yl=x+L20; +170. +2x0, L, cos(8,,)

) . (15)
+2x 6,1, cos(6,, +¢,)+26,,0,,L,l; cos(6,, —0,, — ;)

The total potential energy (U) of the system is due to each link’s center of mass elevation, thus (U)
is given by:
U =My +M,y,+ M.y,

16
=—M [, cos(¢,—6,)+M,l,cos(0,, +¢,)+M, (L2 cos(0,,)+1, cos(0,, +¢3)) (16)

The Lagrangian (L) is defined as follows:

L =T -U
1 12 1 -2 N 2n2 1 2
=167 +=m (7 —2x 6,1, cos(¢, —6)+16, )+512920 +

%mz (X7 +2x6,,1, cos(8,, +¢,)+16;, )+ %139; + (17)
1 (x*+L207 +1762 +2x0, L, cos(8,,) .

2 7| 4256, 1, cos(B,, +,)+26, 6, LI, cos(6,, —6,, —9,)

M |1, cos(,—6,)— M ,1, cos(0,, +¢,)— M, [L, cos(6,,)+1, cos(0,, + ;)]

Applying Lagrange’s equation for each generalized coordinate,x ,0,,0,, and0, , yields:
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1. In (x ) direction:
The Lagrange’s equation in x-direction is given as follows:

i(aij_a_L 0
dt\ ox | ox !
Where:
% = (m, +m, +m)x —m,l, cos(d, —6,)8, +[m,l, cos(8,, +@,)+m;L, cos(6,,)]6,,
+m,l, cos(6,, +¢3)é3a
j—t(%} (m, +m, +my)x —m,l, cos(¢, —6,)8, —m,l, sin(¢, —6,)6;

+[m,1, cos(8,, +¢,)+m,L, cos(6,, )]éza —[m,1,sin(6,, +,)+m,L, sin(6,, )]Ofa

+m;l; cos(0;, + o, )é3a —m,l; sin(0;, + ¢, )932a
oL _

ox
Q. =F —F, cos(0))+F, sin(6,) + F, sin(6,)

0

Applying Eq. (18) yields:
(m, +m, +m)X —m,l, cos(, —6,)8, +[m,l, cos(6,, +@,)+m,L, cos(6,,)]6,,
+m,l, cos(6,, +@,)8,, —mI, sin(¢, —6,)6] —[m,[, sin(8,, +¢,)+m,L,sin(6,,)]63,
—m.l,sin(@,, +¢,)0;, =F, — F, cos(6,) + (F, + F, )sin(6))

2.In 6, direction:

The Lagrange’s equation in 6, direction is given as follows:

dfaa_,
dt| 06, | 96, ~*
Where:
oL : )
Fr —m,l, cos(¢, —6,)x + (I, +m,1} )6,
1
d [ JdL - ) i 0
5[8_9}: —m, [, cos(¢, —6,)x +(]1 +m1112 )91 —m [, sin(¢, —6,)x 6,
1
oL . A .
a_Qz_mlll sin(@, —6,)x 6, + M/, sin(¢, —6))
1

QeI =KL +F,D, -F.D, +(F1F —Flg )Dla

Applying Eq. (24) yields:

(18)

(19)

(20)

ey

(22)

(23)

(24)

(25)

(26)

27)

(28)

—m,l, cos(¢, —6,)x +(]1 +m I} )91 -M [ sin(¢-6)=F L, +F; D, —F.D, +(FIF —Fy )Dla (29)
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3.In O, direction:

The Lagrange’s equation in 6, direction is given as follows:

d|( oL oL
Rl e 30
dt(BOZa] 06,, Qo 30
Where:
L cos(0,, +0,)+m,L,cos(0, ) |x + (I, +m,I> +m.L>)0, +m.L,l,cos(, —6, —¢,)0
ae 2%2 2a 2 32 2a 2 2%2 32 2a 3=2%3 2a 3a 3 3a

2a

dt| 06,
+myL,l; cos(6,, —6;, —9)6;, +m;L, L 5in(6,, —6,, —,)6%,
- [mzlz sin(0,, +¢,) +m;L, sin(6,, )]x 92a —mL,l;sin(0,, —6,, — ¢, )ézaém

d { oL ]:[mzz2 cos(0,, +¢,)+m,L, cos(@za)])é'+([2+m2122+m3L§ )é;a

oL
20,

== [mzlz sin(0,, +¢,)+m,L, sin(6,, )]x éZa —m,L,l, sin(0,, —6,, — ¢, )ézaéza

+M ,1,sin(8,, +¢,)+M L, sin(0,,)
Q92a =F,L,cos(6,,)+ (FIB — £y )Dla Rl i )Dm

Now if we define for simplicity

leDza(FzB _FIF) 31
Tt _Dta (F;B _EF) (32)

Then:
QGZH =F,L,c08(0,,)+T, -7, (33)

Applying Eq. (30) yields:
[m,1, cos(6,, +9,)+m,L, cos(8,,) [ + (I, +m,l5 +m,L3 )b,

+m;L,l; cos(6,, —6;, — ¢, )é3a +m;L,l,sin(6,, —0,, — ¢, )932a (34)
-M .1, sin(0,, +¢,)—M ,L,sin(0,,) =F,L, cos(0,,)+T, —T,

4.1In 0, direction:

The Lagrange’s equation in 6, direction is given as follows:

d(oL ) oL _
E( ] =0, (35)

26, | a6,

Where:
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aaeL = m3l3 COS(93a +¢3 )X +m3Lzl3 COS(QZa _93a _¢3 )éZa t ([3 +m3l32 )é3” (36)
3a
dfoL = ml, cos(8;, + @)X +m;L, 1 cos(8,, —6;, —$,)6 +(1 +m 12)é
dt | 96, shs 30 T 5 sols 20 T30 0300, T3 TISE )05, (37)

—m,L,l,sin(6,, —0,, —¢, )922a —m,lysin(6,, +¢,)x é3a +m,L,lsin(B,, —0,, — ¢, )éZaé3a
aaTL =—m,l,sin(0,, +¢,)x 6,, +m,L,1,sin(0,, —6,, —,),,6,, +M I, sin(6,, +¢,) (38)
3a
O, =FL, cos(8,,)+T, (39)

Applying Eq. (35) yields:

m,l cos(6s, +¢,)% +m,L,1, cos(,, —6, —,)0,, + (13 +m,l? )ém 0)
—m,L,lsin(0,, —6,, — ¢, )922a -M ,l,sin(0,, +¢,)=F,L, cos(6,,)+T,

Equations (34) and (40) can be written in a matrix form leading to the following dynamics model:

(_[2 +m2122 +m3L§) m3LZZ3 COS(GZa _930 _¢3) —éZa:|+

_m3L213 cos(6,, —0;, —9;) (13 +m3132) 6s,
I 0 m3Lzl3 sin(92a _93a _¢3)_ 022u i _lez Sin(eza +¢2) _M3L2 Sin(eza) (41)
__m3Lzl3 Sin(eza _93a _¢3) 0 i 932a _M313 Sin(93a +¢3)
¥
[ =T, | [ [myl, cos(6,, +@,)+m,L, cos(B,,)] O —L,cos(8,,) p
0o 1], msl, cos(6y, +¢,) 0 -L,cos®,)]| -

e

However, if one is interested in the dynamics model given the relative angles instead of the absolute
ones, then substituting Egs. (2-4) into Eq. (41) yields:

m L1 cos(6, +)+1, +m]l (,+m1}) |6
|:—m3L213 sin(9, +¢,) —m L I, sin(6, + ¢3)} [9; } |:—le2 sin(6, +6, +¢,)— M L, sin(6, +86, )}
+

[12 +m 1l +mL +mL] cos(6,+) mL.I cos®, +¢;)Méz}
» ’ ) ‘ » +

m L[ sin(0, +¢,) 0 6; —M [ sin(6, +6,+6, +¢,)
1 [, [m,L,1,sin@, +,) (6] +266, +26,6, +26,6, (42)
B [0 1 :||:T }r[ —m L1, sin(0, +¢,) (6] +266,) }
[m,1, cos(6,+0,+¢)+mL cos( +6)] I,+m,i} +mL +mL]I cos( +¢,) —L, cos(6 +6,) .
_{ m.l cos(6, +6,+6,+¢,) m.L,I cos(6, +¢,)+1, + m3132 =L, cos(6, +6, + 93):| §

To avoid the coupling between the two input torques and to achieve symmetry in the inertia matrix,
the above equation can be multiplied by the inverse of the torque matrix, i.e.:
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BRI

which yields:

{12 +1 +mtl+m, (L +17 4210 cos8,+9,)) 1, +m.l]+m.L,l, cos, +¢3)Mé’2}
s
6

I +ml}+mL,]l cos(0,+9¢,) I +m]l; ,
0 -m.L,l sin(, +9¢,) || 6; . —M 1, sin(6,+0,+¢,)—M (L, sin(6 +6,)+1,sin6 +6,+6,+9,))
m L 1 sin6, +9,) 0 6! —-M I sin(0, +6,+6,+¢)

1 0|7, [2m,L,1,sin®, +¢,)(66,+6.,6,) (43)
B [0 1}{1 } " |:—m3L213 sin(6, +9,) (67 +26,6, )}

m,l, cos(6, +6, +¢,)+m,L, cos(6, +6,) I+1,+ml + —L, cos(6, +6,)
- ( +m,l, cos(6, +6, +6, +9,) ) (m (L2 +1]+2L,1, cos(0, + ¢3))J (—Le cos(6, +6, + 93))

D: =,

1

|

m.l cos(6, +6,+6,+¢,) m. L.l cos(0,+¢,)+1, +m3132 —L, cos(6, +6, +6,)
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1.4 Measurements:

1.4.1 The accelerometer measurements

J
3
Figure 3 The Torso with the accelerometer measurements
a, =x cos(8,,)+L,0,, cos(6,, -6, )+L, 6, +L,0. sin(6, —6, )+gsin(8,,) (44)
a, =% sin(0,,)+L,0,, sin(6,, —6,,) - L,0;, cos(6,, —6,,)— L,0;, — g cos(6,,) (45)

a=.la +ay2 (46)
y, =tan™ [% j (47)

And in terms of relative angles, Equations (43) and (44) become:

a, = cos(6, +6, +6,)+ (L, cos(6,)+ L, ) (6, +6, +L,6,
o (48)
+L,sin(6,) (67 +6; +26,6, )+ g sin(6, +6,+6,)

a, =X sin(6, +6, +6,)+ L, sin(6,) (6, +6, }-g cos(, +6, +6,)—L,6;
’ o . L (49)
— (L, cos(8,)+L, ) (67 +6; )-2(L, cos(6;) +L, )6,6, - 2L, (6,6, +6,6, )

1.4.2 The contact forces

The contact forces acting between the plate and the foot (Fy, F, and F, )can be obtained Using
Newton’s Euler method. Figure 4 shows the forces acting on the foot. Applying Newton’s 2™ law in
x and y directions; which are the parallel and the perpendicular to the platform respectively, and
rearranging the results yields:

Modeling and Simulation Environment for PostuRob II Page 12



X
Figure 4 The free body diagram of the Foot, where:
Fy=mx Fy=(m+m,)i+F, F=ml§
F,=m[6] Fy=(m,l,+m,L,)0, F,=(m,l,+m,L,)6;
F, =m,L6, Fy=m,10; Fy=M,+M,

ZF)? =Inertial forces in x direction.
F, =F cos(8,)+ (M, +M, +M,)sin(6,)— (m, +m, +my)cos(6,)x +m,I, cos(¢,)b,
—[m,1, cos(8,, + @, —6,)+m;L, cos(8,, —6,)]6,, —m,I, cos(8,, + @, —6,)8;, +m,I, sin(¢,)8] (50)
+[m, 1, sin(8,, +¢, —6,)+m,L, sin(6,, —6,)]6;, +m,I, sin(6,, +¢, —6,)6;,

ZF} = Inertial forces in y direction.
F.+F, =—F sin(6))+ (M, +M , +M )cos(8,)+(m, +m, +m)sin(6,)x —m,I, sin(¢, )6,
~[m,1,sin(6,, +, —6,)+m,L,sin(8,, —6,)]6,, —m,l, sin(8,, +¢, —6,)8,, +m [, cos(¢)8} (51)
+[m,1, cos(8,, +¢, —6,)+m,L, cos(8,, —6,)]0;, +m.L, cos(6,, + ¢, —6,)62,

Rearranging Eq. (29), using the definition of the leg-actuators torque given in Eq. (31), yields:
FyD, —F.D, =—ml cos(¢,—6))% +(I,+m,1} )0, =M I sin(¢, —6,)+T, —F; L, (52)

With respect to relative angles, Eq. (50), (51) and (52) become:
F, =F cos(0,)+(M,+M,+M,)sin(6,)—(m, +m, +m,)cos(6,)x +m,I, cos(¢,)6,
—[m,1, cos(8, +@,)+m;L, cos(6,)|(6, +6, )~ m,I, cos(6, +6, +4,) (6, +6, +6;) (53)

m,d, sin(@)67 +[m,1, sin(6, +9,)+m,L, sin(0,)](6, +6, ) +m,1, sin(6, +6,+9,) (6, +6,+6,)
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F.+F, =—F. sin(6))+ (M, +M , +M ;) cos(6,) +(m, +m, +m,)sin(6,)x —m,l, sin(¢, )6,
—[m,1, sin(8, +¢,)+m,L, sin(8,)](6, +6, ) m;l;sin(6, +6, +¢,) (6, +6, +6; }+m,[, cos(¢)6] (54)

+[m,l, cos(0, +¢,)+m,L, cos(02)](0'1 +6, )2 +m,l, cos(, +6, +¢,) (91 +6, +6, )2

FyD, —F.D, =—m,l cos(¢,—60))% +(I,+m 1} )0, - M I,sin(¢, —6,)+T, —F; L, (55)

Equation (53) describes the shear (friction) measurement force F; between the foot and the
platform while Eqs. (54) and (55) can be solved for F, and F, after substituting Eq. (53) in Eq.

(55) to eliminate £ .

1.5 Linearization

In order to obtain the linear model for PostuRob II, an operating point is to be selected first. This
point is chosen to represent the system in its vertical position. About this operating point and for

small rotations, one can assume:

cosf, =1 (56)
cosf, =1 (57)
sinf, =6, (58)
sin@, =0, (59)

Further, it is necessary to neglect Coriolis and normal (centrifugal) acceleration terms arising from
multiplying angular velocities as6,6, , 6,0,, 6.,0,, 65, and 6;.

Based on Eq. (43) the resulting linearized model that describes the system in the operating region is:
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'[2 + L +ml+ m3(L§ +I2+2L1, cos¢3) L+ml +mLL cos@]{éz} _

I L+ ml +mL] cosd, I+ml 6,
M
M, cos¢, + ML, + M, ,cosp, M|/, cos¢3}{92:|+ {T/:le {lez sing, + M, [, sin@}
i M [, cos ¢, M [ cos¢, || 6, T M [ sing,
K w
P
(mzlzcosgi)2 +m3L2J [lez cos¢2+M3L2j 0 L+ L+ml - 0,
- e R | N
—| | +m,l, cosg, +M [ cos ¢, +m3(Li +I2+2L)1, cos¢3) 0,
2 0
m,l, cos ¢, —M.[, cos, 0 L+ ml +mL] coso, ~L, I
5, £
(60)
Where
M s the inertia matrix
K is the quasi stiffness matrix
B, 1is the disturbance matrix

I

is the gravity force (weight) matrix

The state-space model for the PostuRob II is expressed using the four state variables

[92 0, 92 93]. Based on Eq. (42), and using the previously defined variables, the resulting

state-space representation for the system is:

; 0 I 0
“1= N A T R A S E 01 61)
Z| MK 0] z] |M' M™B, MW
e e ——— —V— —_— —
A B N H
Where:
z =6, 93]T
T=[ T7T

F=[x 6 6 6 F]
1, is the identity matrix of order 2.

The output equations describing the contact forces and accelerometer measurements can be also

linearized at the same operating point. Thus, Egs. (48), (49) and (53-55) become:
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a, =x+(L,+L, )91 +(L,+L, )92 +L,6, +2(6,+6,+6,) (62)

a, =-g (63)

y
Fg = _(m1 +m,+ m3))'c' + I:mlll COS¢1 - m212 COs¢2 - m3L2 B m3l3 COS¢3]él

. .. (64)
—[mzl2 cos¢, + m. L, —m,l, <:0s¢)3:|(92 - [m313 cosq)3]03 +F +(M, +M,+ M,)b,

Fo+F, =(M,+M,+M)—[m,1, sing, +m,l,sing, +m,l,sing, |6,

. ; (65)
—[m,1, sing, + m,/, sing, |6, —[m,l, sing, |6,

FyD, —F.D, =—ml, cos(§)x +(I,+m,1} )6, —M [ sing, +(M [, cos$)6, +T, ~F;L, (66)

Modeling and Simulation Environment for PostuRob II Page 16



2.1 Parameters Definition
2.1.1 Description

The main parameters of PostuRob II are defined explicitly in an m-file, which are then used by the
S-function during simulation. Such a definition permits the user to flexibly change any of these
parameters, with no need to make any further changes in other files. The parameters included in the
m-file define the mass, moment of inertia, length, and COM eccentricity angle of each of the three
links of PostuRob II related to the variables shown in Fig. 1.
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2.1.2 Parameters M-file

o©

o® o0 o°
o)
O
[0)]
(+
o
o)
(@)
| (o
H
| H
)
Q
H
Q
3
(0}
(+
()
H
[0)]
3

o°

units are K.M.s
clear all

Definig the basic parametres for the system

global ml m2 m3 Il I2 I3 L1 L2 Lv Le 11 12 13 phil phi2 phi3 M1 M2

M3 Df Db g

$¥System parameters
ml=8.5;

m2=20;

m3=40;

I1=0.35/4;

I2=7/4;

I3=4.8/4;

COM

L1=0.15;

L2=0.95;

Lv=0.55;

Le=0.20;

wl=0.02;

h1=0.04;
ll=sqgrt(wl”2+h1"2);
phil=atan(wl/(L1l-hl));

w2=-0.02;

h2=0.6;
12=sqgrt(w2"2+h2"2);
phi2=atan(w2/h2);

w3=0.05;

h3=0.3;
13=sqrt(w3"2+h3"2);
phi3=atan(w3/h3);

g=9.81;

Ml=ml*g;
M2=m2*g;
M3=m3*g;
Dla=0.1;
Dta=0.1;
Df=0.15;

Db=0.1;

$Foot mass

%Leg mass

%$Torso mass

$Foot Mass Moment of Inertia about its COM
$Leg Mass Moment of Inertia about its COM
$Torso Mass Moment of Inertia about its

$Foot Length

$Leg length

¢distance from J3 to the accelerometer

%distance from J3 to the disturbance Fe

%$COM1 horizental offset

%$COM1 vertical offset

$Distance from J1 to COM1

$Angle between the line J1-COM1 the foot
centerline

%$COM2 horizental offset

%$COM2 vertical offset

$Distance from J2 to COM2

$Angle between the line J2-COM2 the leg
centerline

%$COM3 horizental offset

%$COM3 vertical offset

¢Distance from J3 to COM3

$Angle between the line J3-COM3 the torso
centerline

$Gravity acceleration constant

$Foot wieght

$Leg wieght

$Torso wieght

¢Distance from J1 to the leg actuators
action point

¢Distance from J2 to the torso actuators
action point

$Distance from J1 to the front contact
force

¢Distance from J1 to the back contact
force
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2.2 Linearized Model

2.2.1 Description
The state-space model for the PostuRob II is expressed using the four state variables

[92 0, 92 93]. Based on Eq. (60), and using the previously defined variables, the resulting

state-space representation for the system is:

Z 0 I 0
.Z,: 2|2 |4 0 T+| | |F+ 01 (67)
Z| MK 0] z] |M' M™B, MW
e e ——— —V— —_— —
A B N H
Where:
z =6, 93]T
T =T, Tt]T

F=[x 6 6 6 F]
1, is the identity matrix of order 2.
Or in a compact form as:
7Z=AZ+BT +NF,+H (68)

and the output (measurement) vector:

Y=CZ+DT+N, F,+H,, (69)

with
v=[6, 6, 6, 6, ® a, a F F F] (70)

The constant matrices (A, B, N, H, C, D, N
in the following m-file.

H,,) based on the linearized model are calculated

out ®
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Based on Egs. 67-70, the system matrices corresponding to the
state and output equations for the linearized model are
calculated.

o0 oo

oo

oo

Zdot=A*Z+B*T+N*Fd+H
Y=C*Z+D*T+Nout*Fd+Hout
Where:

Z = [Th2 Th3 Th2d Th3d]'

T = [Tl Tt]'

Fd= [Xdd Thl Thld Thldd Fe]

o0 o0 o0 o°

oo

M(1,1)=I2+I3+m2*12"2+m3*(L2"2+13"2+2*L2*13%*cos (phi3));
M(1,2)=I3+m3*13"2+m3*L2*13*cos(phi3);
M(2,1)=I3+m3*13"2+m3*L2*13*cos(phi3);
M(2,2)=I3+m3*13"2;

K(1,1)=M2*12*cos(phi2)+M3*L2+M3*13*cos(phi3);
K(1,2)=M3*13*cos(phi3);
K(2,1)=M3*13*cos(phi3);
K(2,2)=M3*13*cos(phi3);

W=[M2*12*sin(phi2)+M3*13*sin(phi3)
M3*13*sin(phi3) 1;

Bd(1l,1)=-m2*12*cos(phi2)-m3*L2-m3*13*cos(phi3);
Bd(1l,2)=M2*12*cos(phi2)+M3*L2+M3*13*cos(phi3);
Bd(1,3)=0;
Bd(1l,4)=-I2-I3-m2*12"2-m3*(L2"2+13"2+2*L2*13%*cos (phi3));
Bd(1,5)=L2+Le;

Bd(2,1)=-m3*13*cos(phi3);

Bd(2,2)=M3*13*cos(phi3);

Bd(2,3)=0;

Bd(2,4)=-I3-m3*13"2-m3*L2*13*cos (phi3);

Bd(2,5)=Le;

% The linearized system equations according to equation 60

A=[zeros(2) eye(2)
inv (M) *K zeros(2)]

B=[zeros(2)
inv(M) ]

N=[zeros(2,5)
inv (M) *Bd]
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H=[zeros(2,1)
inv (M) *W]

2222222022200 002228000222000022285202222280002222800022222800222852585

% The outputs of the system are:

% [Th2 Th3 Th2d Th3d Omega g ax ay Fs Ff Fb]';

% Refering to Egs. (61 - 65) the following vectors and matrices
are defined

% so as to simplify the outputs representation

Vax=[L2+Lv L2];

VFsl(1l,1)=-m2*12*cos(phi2)-m3*L2-m3*13*cos(phi3);
VFsl(1l,2)=-m3*13*cos(phi3);

VFs2(1l,1)=-(ml+m2+m3);
VFs2(1l,2)=ml*1ll*cos(phil)-m2*12*cos(phi2)-m3*L2-m3*13*cos(phi3);
VFs2(1,3)=0;

VFs2(1,4)=M1+M2+M3;

VFs2(1,5)=1;

MFl=[1 1
-Df Db];

MF2=[-m2*12*sin(phi2)-m3*13*sin(phi3) -m3*13*sin(phi3)
0 0 17

MF3(1,1)=0;
MF3(1l,2)=-ml*11*sin(phil)-m2*12*sin(phi2)-m3*13*sin(phi3);
MF3(1,3)=0;

MF3(1,4)=0;

MF3(1,5)=0;

MF3(2,1)=-ml*1l*cos(phil);

MF3(2,2)=I1+ml1*11"2;

M£f3(2,3)=0;

MF3(2,4)=Ml*11*cos(phil);

MF3(2,5)=0;

% Using the previously defined matrices; the output equations can

(0]

rearranged as follows:
Th2 = [100 0]*Z +[0 O]*T+[0 O 0 O O]*Fd+[0]*W

Th3 = [0 10 0]*Z +[0 O]*T+[0 O 0 O O]*Fd+[0]*W

Th2d [0 01 0]*Z +[0 O]*T+[0 O 0 O O]*FAd+[0]*W

Th3d

[0 0 0 1]*Z +[0 O]*T+[0 0 O O O]*Fd+[0]*W

Omega g = [0 0 1 1]%Z +[0 O]*T+[0 0 1 0 O]*Fd+[0]*W

00 00 00 00 00 00 O o0 O O° o0 o° o0 O

ax = [Vax*inv(M)*K+[g g] 0 0]*Z+ [Vax*inv(M)*Bt]*T+
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[Vax*inv(M)*Bd+[1 L2+Lv 0 g 0]]*Fd+Vax*inv(M)*W

[0 OO 0]*Z +[0 01*T+[0 O O O O]*Fd+[-g]*W

[V))
<
I

o
0]
I

[VEs1*inv(M)*K 0 0]*Z+ [VFsl*inv(M)*Bt]*T+
[VFs1*inv (M) *Bd+VFs2]*Fd+VFs1*inv (M) *W

[Ff; Fb]= [inv(MF1)*(MF2+[0;-L1]*VFsl)*inv(M)*K zeros(2)]*z +
[inv(MF1)*( (MF2+[0;-L1]*VFsl)*inv(M)*Bt+[0 0;1 0]]*T+
[inv (MF1)* ( (MF2+[0;-L1]*VFsl)*inv(M)*Bd+[0;-
1]*VFs2+MF3) ] *Fd+
[inv(MF1)* ( (MF2+[0;-L1]*VFsl)*inv(M)*W+[M1+M2+M3; -

o0 1 00 00 00 00 00 0P o° o° o0 o°

% Based on the above equations,the matrices C, D, Nout, Hout are
defined as
% follows:

C=[eye(4);
0 011;
Vax*inv(M)*K+[g g] 0 0;
0 00 O;
VFsl*inv(M)*K 0 0;
inv(MFl)* (MF2+[0;-L1]*VFsl)*inv(M)*K zeros(2);
]

D=[zeros(4,2)
00
Vax*inv (M) *Bt
00
VFsl#*inv (M) *Bt
inv(MF1)*((MF2+[0;-L1]*VFsl)*inv(M)*Bt+[0 0;1 0])
]

Nout=[zeros(4,5)
00100
Vax*inv(M)*Bd+[1l L2+Lv 0 g 0]
000O00O
VFsl#*inv (M) *Bd+VFs2
inv(MF1)*((MF2+[0;-L1]*VFsl)*inv(M)*Bd+[0;-L1]*VFs2+MF3)
]

Hout=[zeros(4,1)
Vax*inv (M) *W
-g
VFsl*inv(M)*W
inv(MF1l)*((MF2+[0;-L1]*VFsl)*inv(M)*W+[M1+M2+M3; -
Ml*1ll*sin(phil)])
1
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2.3 S-Function
2.3.1 Description

An S-function is a computer language description of a Simulink block. S-functions can be written in
MATLAB®, C, C++, or Fortran. They are compiled as MEX-files using the mex utility. As with
other MEX-files, they are dynamically linked into MATLAB when needed.

S-functions use a special calling syntax that enables the user to interact with Simulink equation
solvers. This is very similar to the interaction that takes place between the solvers and built-in
Simulink blocks. The form of an S-function is very general and can accommodate continuous,
discrete, and hybrid systems.

The most common use of S-functions is to create custom Simulink blocks. One can use S-functions
for a variety of applications, including; adding new general purpose blocks to Simulink, adding
blocks that represent hardware device drivers, incorporating existing C code into a simulation,
describing a system as a set of mathematical equations and using graphical animations.

As other Simulink blocks, S-functions consist of a set of inputs, a set of states, and a set of outputs,
where the outputs are a function of the sample time, the inputs, and the block's states, as expressed
by the following mathematical relations:

y=fot,x,u) (Output)
X, =f,t,x,u) (Derivative)

Executing an S-function model proceeds in a set of stages. First comes the initialization phase. In
this phase, S-function propagates data types, and sample times, evaluates block parameters,
determines block execution order, and allocates memory. Then the simulation loop starts, where
each pass through the loop is referred to as a simulation step. During each simulation step, S-
function invokes the functions that compute the block's states, derivatives, and outputs for the
current sample time. This continues until the simulation is complete.

The following figure illustrates the stages of an S-function execution:
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< Initializemodel >

Calculate time of next sample hit
(only for variable sample time blocks)

A\ 4

Calculate outputs

|

Update discrete states

&
R} > Cleanup at final
g time step
g Calculate derivatives
5!
Calculate outputs > Integration
(minor time step)

Calculate derivatives

Locate zero crossings

Figure 2-1 S-function execution stages.
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2.3.2 S-Function File

The s-function file used to define the nonlinear dynamics of PostuRob II is given below. The
kinematic and dynamic parameters are passed to this s-function as global parameters. So, these
variables should not be used by other Matlab commands. The control inputs to the system are the
two commanded torques. The external disturbances acting on the system (platform tilt and
translation as well as the external forces) are passed to the s-function as inputs. So the control input
and the external disturbances are collected in one input vector. The number of states used is 4
corresponding to the relative position of the second link to the first and of the third link to the
second one and their velocities. Finally, the output vector of this function comprises all 10
measurements (4 states, 3 contact forces, and 3 vestibular outputs).

This function has two main parts: the first relies on the nonlinear equation 42 to calculate the
derivative of the state vector and on the nonlinear equations 47-51 to calculate the outputs. It is
important to note that the linearized model is not used in the s-function and thus it serves as a good
simulation tool reflecting the physics considered in the modeling.
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function [sys,x0,str,ts] =
PostuRob II Nonlinear Dynamics(t,x,u,flag,th2 0,th3 0,th2d0,th3d0)
global ml m2 m3 I1 I2 I3 L1 L2 Lv 11 12 13 phil phi2 phi3 M1 M2 M3
Le Df Db Fs Ff Fb ax ay g

$PostuRob_II Nonlinear Dynamics
$Defines the nonlinear dynamics of PostuRob II according to
Lagrangian derivations

o°

Nonlinear model for PostuRob II, comprised of:
2 inputs:
1- Leg torque (T1)
2- Torso torque (Tt)

o® o0 o0 o°

o°

5 disturbances
1- Xdd acting on the platform
2- Thetal acting on the platform joint
3- Thetald acting on the platform joint
4- Thetaldd acting on the platform joint
5- Fe Acting on the Torso

o° o0 o° o° o° o°

o°

4 states:
1- Theta2 (th2)
2- Theta2 (th3)
3- Theta2 dot (th2d)
4- Theta3 dot (th3d)

o0 0P o° o° o°

o°

10 outputs:
1- Theta2 (th2)
2- Theta3 (th3)
3- Theta2 dot (th2d)
4- Theta3 dot (th3d)
5- Gyrometer angular velocity (Omega g)
6- Accelerometer x-direction measurement (ax)
7- Accelerometer y-direction measurement(ay)
8- Contact Force Fs
9- Contact Force Ff
10- Contact Force Fb

o0 00 00 0P 0P 0P o° o° o 0P o°

o°

4 initial conditions:
1- Initial 1link2 position =th2 0

o°

% 2- Initial 1link3 position =th3 0
% 3- Initial 1link2 velocityt=th2d0
% 4- Initial 1ink3 velocityt=th3d0

o® o0 o°
o® o0 o°
o® o0 o°
o° o°
o° o°
o° o°
o° o°
o° o°
o° o°
o° o°
o° o°
o° o°
o° o°
o° o°
o° o°
o° o°
o° o°
o° o°
o° o°
o° oo
o° oo
o° o°
o° o°
o° o°
o° oo
o° o°
o° o°
o° o°
o° o°
o° o°
o° o°
o° o°
o° o°
o° o°
o° o°
o° oo
o° o°
o° oo
o° oo
o° o°
o° oo
o° o°
o° oo
o° oo
o° o°
o° oo
o° o°
o° oo
o° oo
o° o°
o° oo
o° o°
o° oo
o° o°
o° o°
o° oo
o° o°
o° o°
o° o°
o° o°
o° oo
o° o°
o° o°
o° o°
o° o°
o° o°

o°
o°
o°

o°

The following outlines the general structure of an S-function.

\O

=}

switch flag,
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oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

Initialization %

%

oo

000000000000
323333333333

%

oo

%

oo
oo

.
14

0
Ff=Db* (M1+M2+M3)/ (Df+Db) ;

Fb=Df* (M1+M2+M3)/ (Df+Db) ;

14

case

=0

Omega g

ax

.
14

ay=

0,th3 0,th2d0,th

[sys,x0,str,ts]=mdlInitializeSizes(t,x,u,flag,th2

3d0);

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

Derivatives

%

%

oo
oo
oo
oo
oo
oo
oo
oo
oo

00

oo
oo
oo
oo
oo

0}
n
G
0

sys=mdlDerivatives(t,x,u);

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

case 2,

sys=mdlUpdate(t,x,u);

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

case 3,

sys=mdlOutputs(t,x,u);

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

GetTimeOfNextVarHit $%

%

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

00 <

oo
oo
oo
oo
oo

0}
n
G
0

sys=mdlGetTimeOfNextVarHit (t,x,u);

o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°

o°

Terminate

%

%

oo

sys=mdlTerminate(t,x,u);

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo oo

S
%

oo

00000000
323333%3

% Unexpected fla
gg990900900
OOO©OOO©OT©OTD©

oo

otherwise

= ',num2str(flag)l]);

error ([ 'Unhandled flag

end
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% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the
S-function.

function
[sys,x0,str,ts]=mdlInitializeSizes(t,x,u,flag,th2 0,th3 0,th2d0,th
3d0)

% call simsizes for a sizes structure, fill it in and convert it
to a
% sizes array.

% Note that in this example, the values are hard coded. This is
not a

% recommended practice as the characteristics of the block are
typically

% defined by the S-function parameters.

o°

sizes = simsizes;

sizes.NumContStates = 4;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 10;

sizes.NumInputs = 7;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

o°

o°

initialize the initial conditions

o°

X

0 = [th2 0,th3 0,th2d0,th3d0];

o°

str is always an empty matrix

o°

str = [];

initialize the array of sample times

t 00 o0 oo

s =10 07];

end mdlInitializeSizes

o°

o°

oo
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% mdlDerivatives
% Return the derivatives for the continuous states.

function sys=mdlDerivatives(t,x,u,th2 0,th3 0,th2d0,th3d0)
global ml m2 m3 Il I2 I3 L1 L2 Lv 11 12 13 phil phi2 phi3 M1 M2 M3
Le Df Db g

Tl=u(l);

Tt=u(2);

Xdd=u(3);

Thl=u(4);

Thld=u(5);

Thldd=u(6);

Fe=u(7);

Th2=x(1);

Th2d=x(3);

Th3=x(2);

Th3d=x(4);

a=[I2+I3+m2*12"2+m3* (L2"2+13"2+2*L2*13*cos(Th3+phi3)),
I3+m3*13"2+m3*L2*13*cos (Th3+phi3);

I3+m3*13"2+m3*L2*13*cos(Th3+phi3), I3+m3*13"2
13

b=

m3*L2*13*sin(Th3+phi3)* (Th3d"2+2*Thld*Th3d+2*Th2d*Th3d)+M2*12*sin(
Thl+Th2+phi2)+M3* (L2*sin(Thl+Th2)+13*sin(Th1+Th2+Th3+phi3) )+T1-
(m2*12*cos(Thl+Th2+phi2)+m3*L2*cos(Thl+Th2)+m3*13*cos(Thl+Th2+Th3+
phi3))*Xdd-

(I2+I3+m2*12"2+m3* (L2"2+13"2+2*L2*13*cos(Th3+phi3)))*Thldd+(L2*cos
(Thl+Th2)+Le*cos(Thl+Th2+Th3) ) *Fe;
m3*L2*13*sin(Th3+phi3)*(Th1ld+Th2d)"2+M3*13*sin(Thl1+Th2+Th3+phi3)+T
t-m3*13*cos(Thl+Th2+Th3+phi3)*Xdd-

(m3*L2*13*cos (Th3+phi3)+I3+m3*13"2)*Thldd+Le*cos(Thl+Th2+Th3)*Fe];

c= inv(a)*b;
Th2dd=c(1);
Th3dd=c(2);
sys = [ Th2d ;Th3d; c(1l);c(2) 1;

% end mdlDerivatives

% mdlUpdate
% Handle discrete state updates, sample time hits, and major time
step

% requirements.
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function sys=mdlUpdate(t,x,u)

sys = [];

% end mdlUpdate

% mdlOutputs
% Return the block outputs.

function sys=mdlOutputs(t,x,u)
global ml m2 m3 Il I2 I3 L1 L2 Lv 11 12 13 phil phi2 phi3 M1 M2 M3
Le Df Db g
Tl=u(l);
Tt=u(2);
Xdd=u(3);
Thl=u(4);
Thld=u(5);
Thldd=u(6);
Fe=u(7);
Th2=x(1);
Th2d=x(3);
Th3=x(2);
Th3d=x(4);
a=[I2+I3+m2*12"2+m3* (L2"2+13"2+2*L2*13*cos(Th3+phi3))
I3+m3*13"2+m3*L2*13*cos (Th3+phi3)
I3+m3*13"2+m3*L2*13*cos (Th3+phi3) I3+m3*13"2
13

b=

m3*L2*13*sin(Th3+phi3)* (Th3d"2+2*Thld*Th3d+2*Th2d*Th3d)+M2*12*sin(
Thl+Th2+phi2)+M3* (L2*sin(Thl+Th2)+13*sin(Th1+Th2+Th3+phi3) )+T1-
(m2*12*cos(Thl+Th2+phi2)+m3*L2*cos(Thl+Th2)+m3*13*cos(Thl+Th2+Th3+
phi3))*Xdd-
(I2+I3+m2*12"2+m3*(L2"2+13"2+2*L2*13*cos(Th3+phi3)))*Thldd+(L2*cos
(Thl+Th2)+Le*cos(Thl+Th2+Th3) ) *Fe;
m3*L2*13*sin(Th3+phi3)*(Th1ld+Th2d)"2+M3*13*sin(Thl1+Th2+Th3+phi3)+T
t-m3*13*cos(Thl+Th2+Th3+phi3)*Xdd-

(m3*L2*13*cos (Th3+phi3)+I3+m3*13"2)*Thldd+Le*cos(Thl+Th2+Th3)*Fe];

c=inv(a)*b;

Th2dd=c(1);

Th3dd=c(2);

Omega g=Th1d+Th2d+Th3d;

ax=Xdd*cos (Thl+Th2+Th3)+(L2*cos(Th3)+Lv)*(Thldd+Th2dd)+Lv*Th3dd+L2
*sin(Th3)*(Thld+Th2d)"2+g*sin(Th1+Th2+Th3);

ay=Xdd*sin(Th1+Th2+Th3)+L2*sin(Th3)* (Thldd+Th2dd)-
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(L2*sin(Th3)+Lv)*(Th1d+Th2d)*2-Lv*Th3d"2-
2*Lv* (Th1d*Th3d+Th2d*Th3d)-g*cos (Th1+Th2+Th3) ;

Fs=Fe*cos(Thl)+(M1+M2+M3)*sin(Thl)-
(ml+m2+m3)*cos(Thl)*Xdd+ml*1ll*cos(phil)*Thldd-
(m2*12*cos(Th2+phi2)+m3*L2*cos(Th2))* (Thldd+Th2dd)-

m3*13*cos (Th2+Th3+phi3)* (Thldd+Th2dd+Th3dd)+ml*11*sin(phil)*Th1ld"2
+(m2*12*sin(Th2+phi2)+m3*L2*sin(Th2))* (Thld+Th2d)"2+m3*13*cos(Th2+
Th3+phi3)* (Thld+Th2d+Th3d) "2;

Mfl=[1 1; -Df Db];

Mf2=[-Fe*sin(Thl)+(M1+M2+M3)*cos(Thl)+(ml+m2+m3)*sin(Thl) *Xdd-

ml*1l*sin(phil)*Thldd-

(m2*12*sin(Th2+phi2)+m3*L2*sin(Th2))* (Thldd+Th2dd)-

m3*13*sin(Th2+Th3+phi3)* (Thldd+Th2dd+Th3dd)+ml*11l*cos(phil)*Th1ld"2

+(m2*12*cos(Th2+phi2)+m3*L2*cos(Th2))* (Thld+Th2d)"2+m3*13*cos(Th2+

Th3+phi3)* (Thld+Th2d+Th3d) "2;
-ml*ll*cos(phil-Thl)*Xdd+(Il+ml*11"°2)*Thldd-M1*11*sin(phil-

Th1l)+T1-Fs*L1l ];

Mf3=inv(Mf1l)*M£f2;

Ff=Mf3(1);
Fb=Mf3(2);
sys = [X; Omega g; ax; ay; Fs; Ff; Fb ];

% end mdlOutputs

% mdlGetTimeOfNextVarHit

% Return the time of the next hit for this block. Note that the
result is

% absolute time. Note that this function is only used when you
specify a

% variable discrete-time sample time [-2 0] in the sample time
array in

% mdlInitializeSizes.

Hh o°

unction sys=mdlGetTimeOfNextVarHit(t,x,u)

sampleTime = 1; % Example, set the next hit to be one second
later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

% mdlTerminate
¢ Perform any end of simulation tasks.
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unction sys=mdlTerminate(t,x,u)

H o°

sys = [];

% end mdlTerminate
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2.4 Simulink Model
2.4.1 Description

Simulink® is a software package for modeling, simulating, and analyzing dynamic systems. It
supports linear and nonlinear systems, modeled in continuous time, discrete time, or a hybrid of the
two. With Simulink one can model physical systems and controllers as block diagrams, and with the
Virtual Reality Toolbox, it is possible to visualize the simulation of dynamic systems over time, as
shown in the upcoming section.

For modeling, Simulink provides a graphical user interface (GUI) for building models as blocks
utilizing a comprehensive block library of sinks, sources, linear and nonlinear components, and
connectors. One can also customize and create his own blocks using S-Functions, as shown in the
previous section.

After creating the Simulink model, one can simulate it, using a choice of integration methods. Using
scopes and other display blocks, it is possible to see the simulation results while the simulation is
running. In addition, one can change many parameters and see what happens for "what if"
exploration.

2.4.2 Simulink Model File

PostuRob II Simulink model is shown in Fig. 2-2. This model consists of the following main
blocks:

- S-function block (Simulink icon of the previous s-function) that defines the dynamics of
the system and its outputs based on the results obtained in part one of this
documentation. The complete code that lies behind this block is shown in the previous
section.

- Several graphical scopes for monitoring the states and outputs over time.

- A virtual world scope that uses the signals generated by the s-function execution to
animate PostuRob II virtual model.
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Figure 2-2 PostuRob II Simulink model.
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2.5 Animation
2.5.1 Description

To obtain a better visualization of the simulation results, a virtual model of PostuRob II is created
and animated using the Virtual Reality Toolbox and the Virtual Reality Builder. The virtual reality
toolbox is a solution for interacting with virtual reality models of dynamic systems over time. It
extends the capabilities of MATLAB and Simulink into the world of virtual reality graphics. With
the virtual reality builder one can create virtual worlds or three-dimensional scenes using standard
Virtual Reality Modeling Language (VRML) technology. The dynamics of the system are defined
with MATLAB and Simulink using the S-function. By signals from the Simulink environment;
animation of the three-dimensional scenes are obtained.

2.5.2 Animation File

Figure 2-3 shows PostuRob II virtual model. This model consists of a box that represents the foot,
and two cylinders corresponding to the leg and the torso. The foot is allowed to move horizontally,
and to rotate about the centerline of its upper surface. The leg, which is represented by the red
cylinder, is defined as a child with respect to the foot, and it is allowed to rotate about its lower tip.
The same relation exists between the torso, the yellow cylinder, and the leg, i.e. the torso is a
defined as a child related to the leg, and it rotates about its lower tip too. The parent-child relation
between these parts ensures that the motion of any part will affect all of its children. This is used to
overcome the fact that there are no joints available in the virtual reality builder environment.

The only parameters used to create PostuRob II virtual model are the lengths of the three links,
other parameters as masses and inertias are of no importance here, since this model depends in its
execution on the results generated from the S-function. The motion of the foot, which represents the
disturbances affecting the system are defined by the application; the foot inclination angle is used as
passed by the application in radians, while the foot horizontal displacement is obtained by a double
integration of the disturbing base acceleration.

o~ SEE
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Figure 2-3 PostuRob II virtual model animation scope.

Modeling and Simulation Environment for PostuRob II Page 35



