Uptake heterogeneity quantification in lung cancer: impact on image features variability of 3D- and 4D-**PET/CT** protocols.

M. Carles¹, T. Bach², I. Torres-Espallardo³, U. Nestle⁴, L. Martí-Bonmatí³, D. Baltas¹

1 Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site, Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.

2 Administrative and Clinical Informatics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site, Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.

3 Clinical Area of Medical Imaging, Hospital Universitario y Politecnico La Fe Valencia, Spain.

4 Department of Radiation Oncology, Klinik Maria Hilf GmbH, Akademisches Lehrkrankenhaus der Uniklinik RWTH Aachen, Moenchengladbach, Germany.

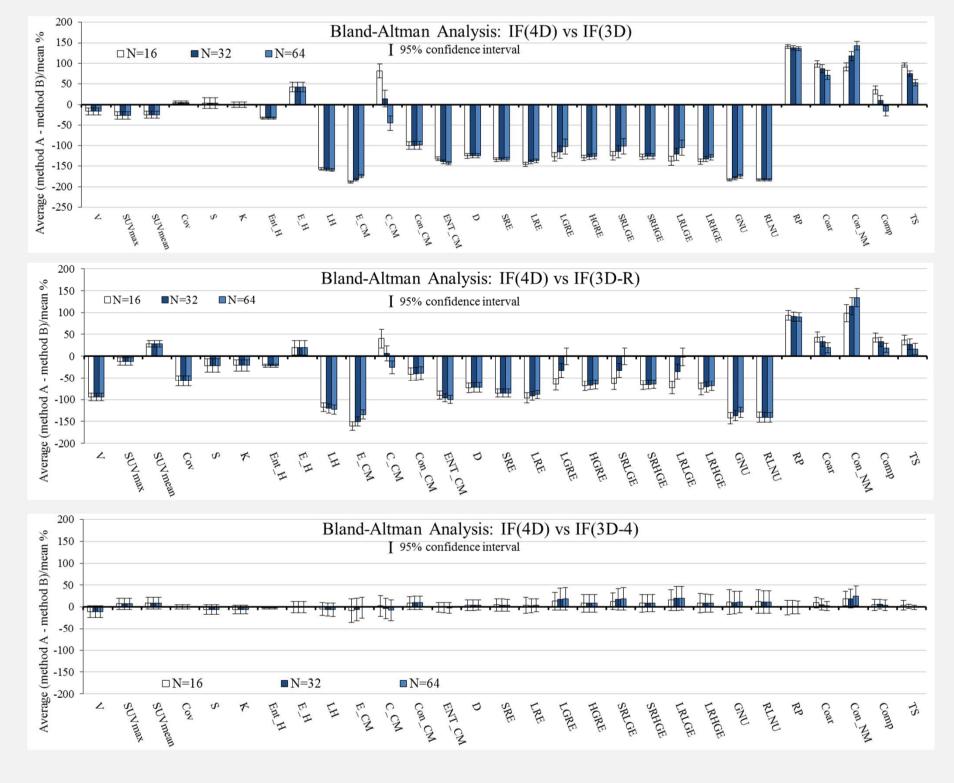
montserrat.carles@uniklinikum-freiburg.de

AIM: To evaluate the impact of different static (3D) and dynamic (4D) PET/CT protocols on PET image features variability.

INTRODUCTION

- > The use of image features for prognosis and response monitoring requires an additional level of reproducibility, beyond what is needed for diagnostic imaging.
- > In lung cancer, the evaluation of the lesion with FDG-PET/CT imaging presents additional challenges due to respiratory movement.

How significant is the impact of the compensation of motion implied by 4D PET/CT on image features (IF)?

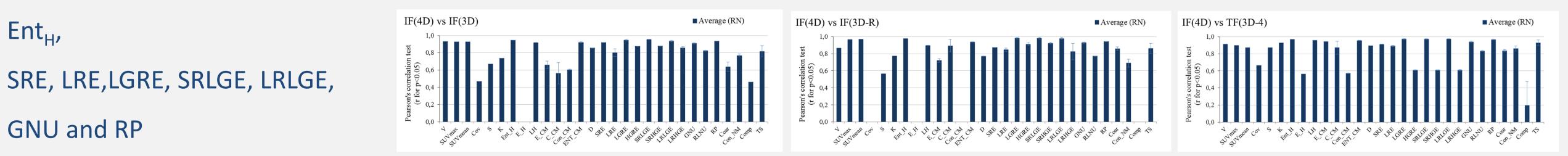

MATERIALS & METHODS

31 Lung cancer patients	Image Protocols	Image Features (IF)	Analysis
(Non-) small cell lung cancer (73 ± 8 y):	Philips System GEMINI TF (64)	PET volume (VOI _{40%}): fixed threshold of 40% of the lesion	To compare two data samples :
14 females and 17 males.	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	maximum intensity. Its use for heterogeneity quantification was validated in a previous study [1].	Bland-Altman (BA) analysis
Scans performed during the same session:	4D 15 min (33 s) BLOB-OSEM-TOF 4x4x4 -	Standard uptake value (SUV) resampling method with a fixed number of bins (N=16, 32, 64).	with significant difference determined based on the average of the
• Static (3D-)	3D 1.5 min (3.5 s) BLOB-OSEM-TOF 2.11x2.11x4 -		
 Retrospectively respiratory gated (4D-) 	3D-4 1.5 min (3.5 s) BLOB-OSEM-TOF 4x4x4 -	3D version of the gray-level co-ocurrence matrix (GLCM), gray level run length matrix (GLRLM) and neighborhood	differences relative to the mean and its 95% confidence interval (CI).
PET/CT with 10 phases.	3D-R 1.5 min (3.5 s) BLOB-OSEM-TOF 2.11x2.11x4 4x4x4	gray tone difference matrix (NGTDM)	
36 lesions (minimum diameter 3FWHM):	BLOB-OSEM-TOF:3-dimensional blob based ordered-subset iterative time-of-flight with 2 iterations and 33 subsets.	SUV-HistogramVolume (\mathbf{V}), Maximum SUV ($\mathbf{SUV_{max}}$), Mean SUV ($\mathbf{SUV_{mean}}$), Skweness (\mathbf{S}), Coefficient of variance (\mathbf{Cov}), Kurtosis (\mathbf{K}), Energy($\mathbf{E_H}$) and Entropy (\mathbf{Ent}_H),GLCMLocal Homogeneity (\mathbf{LH}), Correlation (\mathbf{C}_{CM}), Contrast ($\mathbf{Con_{CM}}$), Energy ($\mathbf{E_{CM}}$), Entropy ($\mathbf{Ent_{CM}}$), and Dissimilarity(\mathbf{D})	Correlations analysed in terms of:
 42% in low region, 13 % in the middle and 	The average scan starting times after the tracer administration: 68 ± 9 min for 3D-PET/CT	GLRLM Short Run Emphasis (SRE), Long Run Emphasis (LRE), Low Gray-Level Run Emphasis (LGRE), High Gray-Level Run Emphasis (HGRE) , Short Run Low Gray-Level Emphasis (SRLGE), Short Run High Gray-Level Emphasis (SRHGE), Long Run Low Gray-Level Emphasis (LRLGE), Long Run High Gray-Level Emphasis (LRHGE) Gray-Level Non-uniformity (GNU), Run Length Non-uniformity (RLNU) and Run Percentage (RP)	Spearman's and Pearson's correlation tests (p<0.05)
 43% in the upper region of the lobes. 	93 ± 11 min for 4D-PET/CT	NGTDM Coarseness (Coar), Contrast (Con _{NM}), Complexity (Comp) and Texture Strength (TS)	

RESULTS

– Comparison of PET IF derived from 4D- and three different 3D- PET/CT protocols:

Bland – Altman Analysis


I. For the 3D- and 4D- PET/CT protocols employed in our clinical routine, most of the IF (except from S, K and E_{CM} with N=32) showed significant differences.

II. When 3D-PET image was post-resampled to the same voxel size of 4D-PET image (3D-R), differences were significant for most of the IF (except from LGRE, SRLGE and LRLGE for N=64 and C_{CM} for N=32)

III. When 3D-PET reconstruction was modified to comprise the same voxel size of 4D-PET image (3D-4), no significant differences were observed for most of the IF (except from Con_{NM} for N=32 and N=64)

Correlation Test

Some IF showed strong linear correlation (r>0.8, p<0.0001) independently of the protocol and the SUV discretization method.

CONCLUSIONS

> For our patient cohort, the compensation of tumor motion implied by 4D-PET had not significant impact on IF (Results III).

The voxel size comprised in the image reconstruction had significant impact in IF response (Results I & III).

> In the comparison of IF derived from 3D vs 4D PET, image post-resampling effect has to be taken into account to avoid misinterpretation of the results (Results II & III).

> Strong linear correlation observed for some IF suggested that the use of different protocols and resampling methods could not have a

significant impact on their prognostic value. However, absolute values were sensitive to the protocol employed. Consequently, the

standardization of the protocol remains still a requirement when absolute IF quantification is involved.

REFERENCES

[1] Carles. et al, "Evaluation of PET texture features with heterogeneous phantoms: complementarity and effect of motion and segmentation method" Phys. Med. Biol. 62 (2017) 652–668.