Impact of motion on PET texture features: evaluation with heterogeneous phantoms.

M. Carles^{1,2,4}, I. Torres-Espallardo¹, D. Baltas^{2,4}, U. Nestle^{3,4}, L. Martí-Bonmatí¹

- 1 Clinical Department of Medical Imaging, Hospital Universitario y Politecnico La Fe, Spain.
- 2 Medical Physics Division, Department of Radiation Oncology, University Medical Center, Freiburg, Germany.
- 3 Department of Radiation Oncology, University Medical Center, Freiburg, Germany. 4 German Cancer Consortium (DKTK), Partner Site Freiburg, Germany.

AIM: To evaluate with experimental heterogeneous phantoms the current use of PET texture analysis for heterogeneity characterization in lesions affected by respiratory motion.

INTRODUCTION

- > An increasing interest is focusing on intratumoral FDG heterogeneity characterization by image features (IF) for its use in prognosis and monitoring of radiotherapy treatment response.
- > In lung cancer, quantification by PET/CT imaging presents additional challenges due to respiratory movement.

Could the compensation of motion implied by 4D PET/CT minimize the variability of image features in lesions following different movements?

MATERIALS & METHODS

Experimental phantom measurements

• Heterogeneous (COV>0.3) phantoms alginate [1] and 18F-FDG I_0=6I_2 I_1=3.5I_2 I_2=2I_2

I3=17 kBq/ml Bg=I3/10

Respiratory movement [2]

õõ

.

Typical.HP A _p (LR)=3 mm and A _p (SI)=18.3 mm	M.Q. Platform	Gated Ungsted	Volues	Effect of repeated measurements for the same morement
$A_p(SI)=(18.3, 15.7, 12.6, 9.4 and 6.3 mm)$	SET 2	Gated	VOLact	Affect of
Typical HP and $A_p(LR)=0$.	M.Q. Platfarm	Ungsted		SI amplitude
$\Lambda_p(LR)$ =(10.5, 8, 5, 3 and 0 mm)	SETS	Gated	VOIact	Effect of
Typical.HP and $\Lambda_p(81)$ =18.3 mm	M.Q. Plotferm	Ungsted		Hysteresis(LR amplitude)
3 Typical (BP, MP, LP), 1 Atypical Normal and 1 Atypical Irregular	SETS	Gated	VOI _{art}	Effect of
A ₄ (LR)=0 and A ₄ (SE)=18.3 mm	M.Q. Phantoes	Unpoted		woreform
Age peak-to-peak amplitude; 31: superior-inferior; LR: left-right; TF: 0 VOE: volume of interest and H(M/L)P: high(middle/low) peak	ientare festares; N	Q Method	Queer;	

Tumor segmentation

 PET volume (VOI_{40%}) [3]: contouring lesions by a fixed threshold of 40% of the lesion maximum intensity.

4D- PET/CT acquisition

Philips System GEMINI TF TOF (64)

- PET and CT acquisitions synchronized to the breathing cycle. Pressure sensor belt: Mayo Clinic Respiratory Feedback System
- Data processing results in 10 phases.
- 10 min (PET) and 36 s (CT)
- BLOB-OSEM-TOF 2 iterations & 3 subsets
- Image voxel volumes
 - CT: 1.17x1.17x3 mm3 CT: 1.1/x1.1/x
 PET: 4x4x4 mm

Image Features (11 metrics) [4] 1st order

coefficient of variance **COV** (σ/μ), kurtosis (KT),

width of the volume-activity histogram (WH)

2nd order:

skewness (SK) and

Energy (ENG), local homogeneity (LH), contrast (CONT) and entropy (ENT).

RESULTS

CONCLUSIONS

- ✓ This work presented the first evaluation of the impact of motion in IF variability with heterogeneous experimental phantoms.
- ✓ For some IF, the use of 4D-PET instead of 3D-PET for IF computation would not translate to a significant difference on their values. However, the use 4D-PET for IF computation should be recommended in order to minimize IF variability in lesions following different movements.

REFERENCES

- [1] Seppenwoolde Y. et al, "Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy", Radiat. Oncol. Biol. Phys., 53, 822-34 (2002).
- [3] Carles M. et al, "Characterization of tumor heterogeneity using dynamic contrast enhanced CT and FDG PET in non-small cell lung cancer", Radiother. Oncol., 109, 65-70, 2013
- [4] El Naqa et al, "Exploring feature-based approaches in PET images for predicting cancer treatment outcomes", Pattern Recognit., 42, 1162-1171, 2009.
- [1] Kurth J. et Al "Rapid prototyping of anatomically realistic radioactive tumor models without inactive wall for PET and PET/CT phantoms". J Nucl Med (54 Suppl 1) 2013:2174, 2013.