Antenatal Therapy to Improve Neurological Outcome
A Role for Allopurinol, Indomethacin and Mg?

Neonatologie und Padiatrische Intensivmedizin
13-14 November, Freiburg, D
Antenatal Neuroprotection

- Very/extremely preterm newborn
- Term newborn
Incidence Diffuse White Matter Damage or (Non-Cystic) PeriVentricular Leukomalacia (NC-PVL)

- Up to 50% according to imaging studies

- Probably most important reason for:
 - The high incidence of adverse cognitive dev. (25-50%)
 - The high incidence of cerebral paresis (5-10%)

Volpe JJ, Lancet 2009
Etiology of NC-PVL

Three (interrelated) causative factors important:

- Maternal / Fetal/Perinatal Inflammation
- Fetal Hypoxia-Ischemia /Reperfusion
- (Hyperoxia?)
Mechanisms of White matter Damage (I)

Activation of NMDA-receptor
Mechanisms of White matter Damage (II)

(Fetal) Hypoxia-Ischemia/inflammation/(hyperoxia?)

1. O_2^\cdot, H_2O_2

2. OH^\cdot

3. nNOS & iNOS activation

NOO$^-$/OH$^\cdot$

(Apotototic) Pre-OD death

Arrested "abnormal pre-OLs"

Neuronal-axonal diseasecc

Pro-inflammatory cytokines

Glial Cell activation
Neuroprotection with Magnesium

Inhibition of NMDA-receptor
Meta-analysis RCTs with Magnesium During Imminent Preterm Birth

Figure 2
Effect of magnesium sulfate on cerebral palsy

<table>
<thead>
<tr>
<th>Study</th>
<th>Relative risk (fixed) (95% CI)</th>
<th>Magnesium</th>
<th>Control</th>
<th>Weight (%)</th>
<th>Relative risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittendorf et al</td>
<td>6.77 (0.37-125.7)</td>
<td>3/30</td>
<td>0/29</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Crowther et al</td>
<td>0.13 (0.01-2.51)</td>
<td>0/55</td>
<td>3/51</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Magpie</td>
<td>0.85 (0.56-1.31)</td>
<td>36/629</td>
<td>42/626</td>
<td>27.7</td>
<td></td>
</tr>
<tr>
<td>Marret et al</td>
<td>0.66 (0.11-3.94)</td>
<td>2/404</td>
<td>3/401</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Rouse et al</td>
<td>0.70 (0.41-1.19)</td>
<td>22/352</td>
<td>30/336</td>
<td>20.2</td>
<td></td>
</tr>
<tr>
<td>Rouse et al</td>
<td>0.59 (0.40-0.85)</td>
<td>41/1188</td>
<td>74/1256</td>
<td>47.4</td>
<td></td>
</tr>
<tr>
<td>Combined</td>
<td>0.69 (0.55-0.88)</td>
<td>104/2658</td>
<td>152/2699</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Mechanisms of White matter Damage (III)

(Fetal) Hypoxia-Ischemia/inflammation/(hyperoxia?)

1.

- O_2^\cdot, H_2O_2
- OH^\cdot
- Indomethacin

2.

- nNOS & iNOS activation
- NOO^-/OH^\cdot

3.

- Pro-inflammatory cytokines
- Glial Cell activation

(Apotototic) Pre-OD death

Arrested “abnormal pre-OLs

Neuronal-axonal disease

Indomethacin
Tocolytic indomethacin: effects on neonatal haemodynamics and cerebral autoregulation in the preterm newborn
However, no evidence for improved (or adverse) neuro-developmental outcome after tocolysis with Indomethacin for imminent preterm birth*

*Klauser CK et al J Matern Fetal neonatal Med 2012
*Ehsanipoor et al, Am J Perinatol 2011
“Pending” Therapies

- Melatonin
- Erythropoietin (postnatal)
- Caffeine (postnatal)
- (Mesenchymal) Stem Cells (postnatal)
Prevention/Reduction of severe IVH after Early Indomethacin Treatment

It has been assumed that Indomethacin decreases Germinal perfusion lowering the risk for severe IVH

Ballab P, Perinatol 2014
Table II. Neonatal characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Time of indomethacin prophylaxis</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(<6\ h (n = 730))</td>
<td>(>6\ h (n = 138))</td>
</tr>
<tr>
<td>GA, weeks, mean ± SEM</td>
<td>26.3 ± 1.9</td>
<td>26.7 ± 2.3</td>
</tr>
<tr>
<td>Birth weight, g, mean ± SEM</td>
<td>861 ± 208</td>
<td>885 ± 225</td>
</tr>
<tr>
<td>Male sex, n (%)</td>
<td>363 (50)</td>
<td>68 (49)</td>
</tr>
<tr>
<td>White race, n (%)</td>
<td>623 (86)</td>
<td>120 (88)</td>
</tr>
<tr>
<td>Outborn, n (%)</td>
<td>25 (3)</td>
<td>28 (20)</td>
</tr>
<tr>
<td>5-minute Apgar score <5, n (%)</td>
<td>102 (14)</td>
<td>21 (16)</td>
</tr>
<tr>
<td>Resuscitation in labor and delivery room, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intubation</td>
<td>527 (72)</td>
<td>105 (77)</td>
</tr>
<tr>
<td>Chest compressions</td>
<td>38 (5)</td>
<td>12 (9)</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>11 (2)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Respiratory support in the first 24 hours, n (%)</td>
<td>716 (98)</td>
<td>132 (96)</td>
</tr>
<tr>
<td>Surfactant use, n (%)</td>
<td>590 (81)</td>
<td>117 (85)</td>
</tr>
<tr>
<td>Pneumothorax, n (%)</td>
<td>39 (5)</td>
<td>14 (10)</td>
</tr>
<tr>
<td>Neonatal seizure, n (%)</td>
<td>30 (4)</td>
<td>8 (6)</td>
</tr>
</tbody>
</table>
Indomethacin <6 h reduces severe IVH incidence (II)

Mirza et al, J Pediatr 2013
Indomethacin reduces severe IVH incidence (II)

% Severe IVH

Severe IVH Risk

- Without Prophylactic Indomethacin
- With Prophylactic Indomethacin
Short-term Outcome: PDA, IVH

Study or Subgroup

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Treatment Events</th>
<th>Control Events</th>
<th>Total</th>
<th>Weight</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mahony 1985</td>
<td>13</td>
<td>13</td>
<td>54</td>
<td>9.7%</td>
<td>1.04 [0.53, 2.03]</td>
<td>1985</td>
</tr>
<tr>
<td>Puckett 1985</td>
<td>3</td>
<td>3</td>
<td>16</td>
<td>2.3%</td>
<td>1.00 [0.24, 4.23]</td>
<td>1985</td>
</tr>
<tr>
<td>Ment 1985</td>
<td>1</td>
<td>4</td>
<td>24</td>
<td>3.1%</td>
<td>0.25 [0.03, 2.08]</td>
<td>1985</td>
</tr>
<tr>
<td>Rennie 1986a</td>
<td>5</td>
<td>8</td>
<td>24</td>
<td>5.9%</td>
<td>0.68 [0.26, 1.79]</td>
<td>1986</td>
</tr>
<tr>
<td>Krueger 1987</td>
<td>2</td>
<td>4</td>
<td>15</td>
<td>2.9%</td>
<td>0.57 [0.12, 2.67]</td>
<td>1987</td>
</tr>
<tr>
<td>Vincen 1987</td>
<td>3</td>
<td>2</td>
<td>15</td>
<td>1.5%</td>
<td>1.50 [0.29, 7.73]</td>
<td>1987</td>
</tr>
<tr>
<td>Gutierrez 1987</td>
<td>9</td>
<td>13</td>
<td>30</td>
<td>10.1%</td>
<td>0.67 [0.34, 1.32]</td>
<td>1987</td>
</tr>
<tr>
<td>Ment 1988</td>
<td>0</td>
<td>1</td>
<td>18</td>
<td>1.2%</td>
<td>0.30 [0.01, 6.91]</td>
<td>1988</td>
</tr>
<tr>
<td>Hanigan 1988</td>
<td>13</td>
<td>8</td>
<td>55</td>
<td>6.2%</td>
<td>1.60 [0.72, 3.55]</td>
<td>1988</td>
</tr>
<tr>
<td>Bandstra 1988</td>
<td>14</td>
<td>13</td>
<td>99</td>
<td>9.9%</td>
<td>1.09 [0.54, 2.19]</td>
<td>1988</td>
</tr>
<tr>
<td>Bada 1989</td>
<td>9</td>
<td>12</td>
<td>71</td>
<td>9.2%</td>
<td>0.74 [0.33, 1.64]</td>
<td>1989</td>
</tr>
<tr>
<td>Morales-Suarez 1994</td>
<td>8</td>
<td>14</td>
<td>40</td>
<td>10.7%</td>
<td>0.57 [0.27, 1.21]</td>
<td>1994</td>
</tr>
<tr>
<td>Ment 1994a</td>
<td>7</td>
<td>5</td>
<td>27</td>
<td>3.4%</td>
<td>1.76 [0.63, 4.94]</td>
<td>1994</td>
</tr>
<tr>
<td>Ment 1994b</td>
<td>16</td>
<td>29</td>
<td>209</td>
<td>21.4%</td>
<td>0.59 [0.33, 1.05]</td>
<td>1994</td>
</tr>
<tr>
<td>Couser 1996</td>
<td>1</td>
<td>1</td>
<td>43</td>
<td>0.7%</td>
<td>1.09 [0.07, 16.94]</td>
<td>1996</td>
</tr>
<tr>
<td>Yaseen 1997</td>
<td>1</td>
<td>1</td>
<td>13</td>
<td>0.8%</td>
<td>0.93 [0.06, 13.37]</td>
<td>1997</td>
</tr>
<tr>
<td>Supapannachart 1999</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>1.1%</td>
<td>0.33 [0.01, 7.58]</td>
<td>1999</td>
</tr>
</tbody>
</table>

Total (95% CI):

- **Treatment Events:** 771
- **Control Events:** 796
- **Total Events:** 105

Total Weight: 100.0%

Risk Ratio M-H, Fixed, 95% CI:

- **0.82 [0.65, 1.03]**

Heterogeneity:

- Chi² = 11.41, df = 16 (P = 0.78); I² = 0%

Test for overall effect: Z = 1.68 (P = 0.09)

Fowlie et al, Cochrane 2010
However, Long-term Neurodevelopmental Outcome not different between treated/non-treated preterms (I)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Treatment</th>
<th>Control</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Total</td>
<td>8.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Couser 1996</td>
<td>2</td>
<td>30</td>
<td>7</td>
<td>8.2%</td>
</tr>
<tr>
<td>Ment 1994b</td>
<td>13</td>
<td>166</td>
<td>14</td>
<td>18.4%</td>
</tr>
<tr>
<td>TIPP 2001</td>
<td>56</td>
<td>467</td>
<td>55</td>
<td>71.9%</td>
</tr>
<tr>
<td>Vincen 1987</td>
<td>5</td>
<td>15</td>
<td>1</td>
<td>1.5%</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>678</td>
<td>694</td>
<td>100.0%</td>
<td>1.04 [0.77, 1.48]</td>
</tr>
<tr>
<td></td>
<td>78</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heterogeneity: Chi² = 3.76, df = 3 (P = 0.29); I² = 20%</td>
<td>Test for overall effect: Z = 0.23 (P = 0.82)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.4.2 Visual impairment

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Treatment</th>
<th>Control</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Total</td>
<td>12.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ment 1994b</td>
<td>1</td>
<td>170</td>
<td>1</td>
<td>12.7%</td>
</tr>
<tr>
<td>TIPP 2001</td>
<td>9</td>
<td>465</td>
<td>7</td>
<td>87.3%</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>635</td>
<td>639</td>
<td>100.0%</td>
<td>1.31 [0.49, 3.49]</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heterogeneity: Chi² = 0.04, df = 1 (P = 0.85); I² = 0%</td>
<td>Test for overall effect: Z = 0.50 (P = 0.62)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.4.3 Hearing impairment

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Treatment</th>
<th>Control</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Total</td>
<td>9.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ment 1994b</td>
<td>1</td>
<td>170</td>
<td>1</td>
<td>9.3%</td>
</tr>
<tr>
<td>TIPP 2001</td>
<td>10</td>
<td>465</td>
<td>10</td>
<td>90.7%</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>626</td>
<td>633</td>
<td>100.0%</td>
<td>1.02 [0.45, 2.33]</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heterogeneity: Chi² = 0.00, df = 1 (P = 0.98); I² = 0%</td>
<td>Test for overall effect: Z = 0.04 (P = 0.97)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.4.4 Severe neurodevelopmental impairment

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Treatment</th>
<th>Control</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Total</td>
<td>10.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandstra 1998</td>
<td>14</td>
<td>78</td>
<td>15</td>
<td>10.3%</td>
</tr>
<tr>
<td>Ment 1994b</td>
<td>11</td>
<td>119</td>
<td>19</td>
<td>12.9%</td>
</tr>
<tr>
<td>TIPP 2001</td>
<td>118</td>
<td>444</td>
<td>117</td>
<td>76.8%</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>641</td>
<td>645</td>
<td>100.0%</td>
<td>1.04 [0.83, 1.29]</td>
</tr>
<tr>
<td></td>
<td>143</td>
<td>151</td>
<td></td>
<td>0.98 [0.79, 1.17]</td>
</tr>
<tr>
<td></td>
<td>Heterogeneity: Chi² = 2.33, df = 2 (P = 0.23); I² = 32%</td>
<td>Test for overall effect: Z = 0.40 (P = 0.69)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fowlie et al, Cochrane 2010
Antenatal Neuroprotection

- Very/extremely preterm newborn
- Term newborn
Perinatal Hypoxia-Ischemia (Birth Asphyxia):

- Clinical Outcome
 - Motor deficits (cerebral palsy)
 - Epilepsy
 - Mental retardation/ learning disabilities
 - Visual and Auditive problems
 - Behavioral problems

- Incidence: 4-9 per 1000 live births
- High mortality and morbidity (1 per 1000 live births)
Incidence of fetal hypoxia

- 10-20 fetuses per 1000 fetuses

Incidence of perinatal asphyxia

- 1-3 neonates per 1000 live births
Origin(s) of Perinatal Asphyxia

Ante-perinatally (80%)
- Umbilical cord compression
- Poor placental function
- Inadequate relaxation uterus/oxygenation placenta
- Early separation of placenta from uterus
- Inadequate maternal oxygenation
- Low maternal blood pressure

Postnatally (20%)
So, fetal hypoxia is important determinant of perinatal asphyxia and consequently of post-HI-encephalopathy.
Time profile of destructive pathways induced by fetal hypoxia-induced reoxygenation/reperfusion

- Superoxide FR formation
- Pro-radical formation (NPBI) \rightarrow OH• FR
- Inflammation/cytokines / iNOS/Apoptosis
- Downregulation trophic factors

Fetal hypoxia-ischemia

Hypox-Xanthine

FREE-Iron

Ca$^{2+}$

Glutamate

pH

Birth

nNOS \rightarrow NO$^-$ \rightarrow ONOO$^-$

30 min 3h 6h 12h 24h days
Hypoxia-induced Free Radical Formation

Dirnagel U et al, J Cereb Blood flow Metab 1995
Anti-oxidant Therapies

• Vitamin C/E
• Noble gasses
• Allopurinol
• Deferoxamine
• Selective NOS-inhib
• N-Acetyl Cysteine (NAC)
• Erythropoietin (EPO)
• Lazaroids
• Edaravone
Xenon-inhalation

Advantage
- highly neuroprotective
- Anesthetic
- Xenon-inhalation mother

Disadvantage
- very costly
- Complex Ventilation set-up
Noble Gas Xenon

Inhibition of NMDA-receptor

Xenon
P7 Rats: Hypoxia-Ischemia and Xenon

Hobbs et al, Stroke 2008
Noble Gas Xenon

• Advantage
 - highly neuroprotective

• Disadvantages
 - very costly
 - Complex Ventilation set-up
ALLOPURINOL
Superoxide Formation upon reoxygenation

Severe Fetal Hypoxia

Hypoxanthine

Birth

Hypoxanthine + \(O_2 \)

Xanthin Oxidase (XO)

Superoxide!!

Xanthine + Uric acid

ALLOPURINOL
Maternal Allopurinol Therapy

• Experimental evidence

• Clinical evidence
Fetal sheep HI-model by Umbilical Cord Occlusion

Derks et al, Perinatal Center-Utrecht, Cambridge-UK
Acid-Fuchsin Staining

Loss of Brain Tissue

Damaged Neurons

Kaandorp et al, Pediatr Res 2012
Troponin (mcg/L)

Myocardial Damage

Kane et al, J Physiol 2014
Maternal Allopurinol Therapy

- Experimental evidence
- Clinical evidence
Allopurinol and Superoxide after Ischemia

Superoxide anion radical Prod.

Takeru Ono et al, Brain Research 2009
TimeProfile of ROS/Superoxide Formation

Re-oxygenation

Superoxide-prod

Fetal Hypoxia

- pH ↓
- FREE-Iron ↑
- Ca^{2+} ↑
- glutamate ↑

Free-iron (Fenton Reaction)

Treatment during Reperfusion-reoxygenation (Maternal Therapy)

30 min 3h 6h 12h 24h days
Clinical Randomized Controlled Trial during fetal hypoxia

2010-2011: Multicenter RCT with 500 mg Allopurinol or placebo iv to mother: n= 111/111

Results:
- No Adverse effects
Short-term outcome after maternal ALLO Biomarkers Brain Damage: S100B (pg/ml) /Neuroketal (pg/ml)

Kaandorp et al, accepted ADC Fetal & Neonatal ed
Long-term outcome after maternal ALLO

Currently 5 years outcome investigated:

- CBCL questionnaires
- ASQ questionnaires
Future

Allopurinol on reanimation table?
Optimal intervention strategy, a Dream?

(Maternal) early postnatal allopurinol*
Hypothermia
Anti-Oxidative Therapy/Anti-Inflammatory Therapy

* Gender effect?
Thank you for your attention
Which Neuroprotective Agents are Ready for Bench to Bedside Translation in the Newborn Infant?

Nicola J. Robertson, MB ChB, PhD¹, Sidhartha Tan, MD², Floris Groenendaal, MD, PhD³, Frank van Bel, MD, PhD³, Sandra E. Juul, MD, PhD⁴, Laura Bennet, PhD⁵, Matthew Derrick, MD², Stephen A. Back, MD, PhD⁶, Raul Chavez Valdez, MD⁷, Frances Northington, MD⁷, Alistair Jan Gunn, MB ChB, PhD⁵, and Carina Mallard, PhD⁸

J Pediatr 2012