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Propensity score analyses attempt to control for confounding in observational studies by adjusting for the likelihood that a 

given patient is treated. It has been proposed that such analyses achieve better control than multivariate outcome modeling 

in addressing confounding by indication, but there is little empirical evidence on this point. Based on a Medline search, we 

assessed the use of propensity scores over time and systematically evaluated those studies published in 2002. The use of 

propensity score analyses has increased sharply from a total of 5 papers before 1998 to 28 in 2002. Propensity scores 

varied considerably in their ability to predict treatment choice, with an area under the receiver operating characteristic 

curve ranging from a relatively poor value of 0.62 to the comparatively good value of 0.84. Two thirds of studies that 

presented results from both propensity score and 'traditional' multivariable outcome modeling showed very similar results. 

Use of propensity score methods has increased exponentially in non-experimental research, but there is little empirical 

evidence that these methods yield different or better estimates compared with 'traditional' multivariable outcome 

modeling. To study the comparative behavior of EPS and disease risk scores (DRS, combining several risk indicators into 

a single score), particularly with small study size, we then compared different scoring methods to control for confounding 

including propensity and disease risk scoring methods in evaluation of the effect of NSAID use on 1-year mortality from 

any cause in a cohort of 103,133 hospitalized elderly Medicaid beneficiaries. We chose this relation because it is subject to 

strong confounding, and the most plausible relation is at or near the null. From this cohort, we re-sampled 1,000 random 

subcohorts of 10,000, 1,000 and 500 people to assess the distribution of estimates. For each sample, we estimated the EPS 

and DRS using forward variable selection (alpha=0.3) and the 'traditional' multivariable outcome model using forward 

variable selection (alpha=0.2), additionally limiting the number of variables so as to have at least 8 outcomes per variable 

in the model. We used the estimated EPS to control for confounding by matching, by inverse probability of treatment 

weighting (IPTW), stratification, linear splines, and as a continuous variable in a proportional hazards outcome model. In 

the full cohort, the crude relative risk (RR) of dying for NSAID users was 0.68 (95% confidence interval: 0.66-0.71). The 

'traditional' multivariate adjustment resulted in a RR of 0.80 (0.77-0.84). The RR closest to the most plausible truth of no 

protective effect of NSAID was achieved by IPTW (0.85;0.82-0.88). With decreasing cohort size, estimates remained 

further from the null, suggesting more residual confounding (despite an increasing c-statistic of the EPS predicting 

exposure), which was most pronounced for IPTW (for cohorts of N=500: RR = 0.72; 0.26 - 1.68). In this setting, the 

various ways to apply EPS and DRS behaved differently with smaller study size. Analytic techniques using EPS or DRS 

were not generally superior to 'traditional' multivariable outcome modeling. The c-statistic did not perform well in 

predicting the ability of EPS or IPTW in controlling confounding. Finally, I will present a new method to incorporate 

information on the joint distribution of unobserved confounders when assessing the sensitivity of effect estimates to 

unobserved confounding. This method is base on the combination of Propensity score methods and regression calibration. 


