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Introduction

1.1 REAL-LIFE PROBLEMS AS MOTIVATION FOR MODEL BUILDING

Data are collected in all areas of life. In research, data on several variables may be collected to
investigate the interrelationships among them, or to determine factors which affect an outcome
of interest. An example from medicine is the relationship between the survival time of a patient
following treatment for cancer and potentially influential variables (known in this context as
prognostic factors), such as age, size of the tumour, its aggressiveness (grade), and so on. Often,
effects of more than 10 potentially influential variables must be considered simultaneously
in a single model. Our main emphasis is on examples from the health sciences, particularly
clinical epidemiology. We discuss statistical methods to develop a model which best tries to
answer specific questions in the framework of regression models. Although nearly all of the
examples discussed have a background in the health sciences, the methods we describe are
also highly relevant in other areas where multivariable regression models with continuous
variables are developed.

1.1.1 Many Candidate Models

With today’s fast computers and sophisticated statistical software, it is nearly trivial to fit almost
any given model to data. It is important to remember that all models are based on several more
or less explicit assumptions, which may correspond more or less well to unknown biological
mechanisms. Therefore, finding a good model is challenging. By ‘good’ we mean a model
that is satisfactory and interpretable from the subject-matter point of view, robust with respect
to minor variations of the current data, predictive in new data, and parsimonious. Therefore,
a good model should be useful beyond the dataset on which it was created.

In fitting regression models, data analysts are frequently faced with many explanatory
variables, any or all of which may to some extent affect an outcome variable. If the number of
variables is large, then a smaller model seems preferable. An aim of the analysis, therefore,
is the selection of a subset of ‘important’ variables that impact on the outcome. For this task,
techniques for stepwise selection of variables are available in many statistical packages and
are often used in practical applications (Miller, 2002). Despite the importance of methods of
variable selection and the enormous attention paid to the topic, their properties are not well
understood. All are criticized in the statistical literature.

Multivariable Model-Building Patrick Royston, Willi Sauerbrei
c© 2008 John Wiley & Sons, Ltd

1

CO
PYRIG

HTED
 M

ATERIA
L



2 INTRODUCTION

1.1.2 Functional Form for Continuous Predictors

A second obstacle to model building is how to deal with nonlinearity in the relation between
the outcome variable and a continuous or ordered predictor. Traditionally, such predictors are
entered into stepwise selection procedures as linear terms or as dummy variables obtained after
grouping. The assumption of linearity may be incorrect. Categorization introduces problems of
defining cutpoint(s) (Altman et al., 1994), overparametrization and loss of efficiency (Morgan
and Elashoff, 1986; Lagakos, 1988). In any case, a cutpoint model is an unrealistic way to
describe a smooth relationship between a predictor and an outcome variable.

An alternative approach is to keep the variable continuous and allow some form of nonlin-
earity. Hitherto, quadratic or cubic polynomials have been used, but the range of curve shapes
afforded by conventional low-order polynomials is limited. Box and Tidwell (1962) propose
a method of determining a power transform of a predictor. A more general family of paramet-
ric models, proposed by Royston and Altman (1994), is based on fractional polynomial (FP)
functions and can be traced back to Box and Tidwell’s (1962) approach. Here, one, two or
more terms of the form xp are fitted, the exponents p being chosen from a small, preselected
set of integer and noninteger values. FP functions encompass conventional polynomials as a
special case.

To illustrate the main issues considered in our book, we start with two characteristic
examples. In the first example, we consider a simple regression model for a continuous
outcome variable with a single, continuous covariate. In the second example we illustrate
several approaches to modelling the simultaneous effect of seven potential prognostic factors
on a survival-time outcome with censoring. As with most real-life research questions, the
prognostic factors are measured on different scales and are correlated. Finding satisfactory
multivariable models which include continuous predictors is still a great challenge and is the
main emphasis of our book.

1.1.3 Example 1: Continuous Response

We start with a simple illustration of how researchers try to cope with the problems of modelling
a continuous covariate in real-life studies. Luke et al. (1997) described the relationship
between percentage body fat content (pbfm) and body-mass index (bmi) in samples of black
people from three countries (Nigeria, Jamaica and the USA). See Appendix A.2.1 for further
details. The authors aimed to find out how well bmi predicted pbfm.

‘Standard’ Analysis (Polynomial Regression)
Percentage of body fat and body-mass index were highly correlated, with Spearman correlation
coefficient rS(bmi, pbfm)= 0.92. The authors stated that the relationship between pbfm and
bmi was ‘quadratic in all groups except Nigerian men, in whom it was linear’. No indication
was given as to how the quadratic (or linear) model was arrived at. The left panel of Figure 1.1
shows the raw data and the authors’ fitted quadratic curve for the subsample of 326 females
from the USA.Although the fit looks reasonable, we see some minor lack of fit at the lower and
upper extremes. More important, the quadratic curve turns downwards for bmi > 50 kg m−2,
which makes little scientific sense. We would not expect the fattest women to have a lower
body fat percentage than those slightly less obese. Quadratic functions always have a turning
point, but it may or may not occur within the range of the observed data. We return to the
critical issue of the scientific plausibility of an estimated function in Section 6.5.4.
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Figure 1.1 Research body-fat data. Left panel: raw values of pbfm and the fitted quadratic curve. Right
panel: raw and smoothed residuals with 95% confidence interval (CI; see section for further explanation).
Lack of fit of the quadratic is seen in the right panel.

Further evidence of lack of fit is seen in the right panel of Figure 1.1, which shows smoothed
residuals from the quadratic curve together with a 95% pointwise CI. We used a locally linear
(running-line) smoother here (Sasieni and Royston, 1998). A pattern somewhat characteristic
of a cubic polynomial is apparent in the smoothed mean residual; indeed, adding a cubic
term in bmi to the model improves the fit significantly (P = 0.0001). A quartic term is not
significant at P < 0.05, so conventionally one would stop elaborating the model there.

Fractional Polynomial Functions
As an alternative, we also selected a curve from the family of degree-one FPs, also known as
FP1 functions. FP1 functions are an extension of an ad hoc approach often taken by applied
statisticians in the past and examined in some detail by John Tukey (Tukey, 1957; Mosteller
and Tukey, 1977). A power p or logarithmic transformation is applied to a predictor x, giving
a model whose systematic part is β0 + β1x

p or β0 + β1 ln x. The power p for FP1 functions is
restricted to the predefined set S = {−2, −1, −0.5, 0, 0.5, 1, 2, 3} proposed by Royston and
Altman (1994) for practical use. FP1 functions are easily extended to higher order FPs (FP2,
FP3, . . .) in which combinations of power transformations of x are used, resulting in a family
of flexible functions. The full definition is given in Section 4.3. Selection of the best-fitting
model is discussed in Sections 4.8 and 4.10.

The best-fitting FP1 function for the research body-fat data, among the eight transformations
in set S, turns out to have power p=−1, for which the formula is β0 + β1x

−1. The best-
fitting FP2 function has powers (−2, −1), for which the formula is β0 + β1x

−2 + β2x
−1. For

comparison with traditional approaches, the fit of five models (linear, quadratic, cubic, FP1,
FP2) is summarized in Table 1.1.
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Table 1.1 Goodness-of-fit statistics for five models for the research
body-fat data.

Model d.f.a Deviance D R2

Linear 1 1774.87 0.782
Quadratic 2 1647.18 0.853
Cubic 3 1630.70 0.860
FP1(−1) 2 1629.02 0.861
FP2(−2, −1) 4 1627.31 0.862

a Degrees of freedom of the (fractional) polynomial terms.

In terms of the proportion of variation explained R2, there is little difference between the
quadratic, cubic, FP1 and FP2 models, whereas the linear model is inferior. Informally, in terms
of the deviance D =−2l (where l is the maximized log likelihood), the cubic, FP1 and FP2
models are superior to the quadratic but differ little among themselves. It turns out that the FP2
model does not fit significantly better than the FP1 (P = 0.4; see Section 4.10.3). Figure 1.2
shows that smoothed residuals for the cubic and FP1 models appear roughly random. Note
that FP1 models are by definition monotonic (i.e. have no turning point – see Section 4.4); so,
provided the fit is adequate, they are a good choice in this type of example. Figure 1.3 shows
the fitted curves from the models in Table 1.1.

The main lessons from this example are the benefits of a systematic approach to model
selection (here, selection of the function) and of the need to assess the results critically, both
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Figure 1.2 Research body-fat data. Left and right panels show residuals and smoothed residuals with
95% CIs from the cubic and FP1 models respectively.
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Figure 1.3 Research body-fat data. Fitted lines for five models. For raw data, see Figure 1.1.

from statistical and subject-matter perspectives. A plot such as Figure 1.1 clearly shows that
a quadratic fits reasonably well, and equally clearly that it is not an ideal model – the curve
is implausible. In purely statistical terms, an examination of smoothed residuals shows the
deficiencies of the quadratic model and gives a hint on how to remedy them. The cubic, FP1
and FP2 models are better and fit the data about equally well, but the parsimony principle
leads us to prefer the FP1 model. In our experience, simple models are generally more robust
and generalize better to new data than complex ones.

1.1.4 Example 2: Multivariable Model for Survival Data

In a study of primary node positive breast cancer patients, seven standard prognostic factors
(age, menopausal status, tumour size, tumour grade, number of positive lymph nodes, proges-
terone receptor status, and oestrogen receptor status) were considered in the development
of a prognostic model for recurrence-free survival (RFS) time. For further details, see
Appendix A.2.2. Figure 1.4 shows a Kaplan–Meier survival plot. Median RFS time was 4.9
years (95% CI, 4.2 to 5.5 years). Cox proportional hazards modelling (see Section 1.3.3)
was used to investigate the simultaneous effect of the factors on the relative hazard of
recurrence.

For continuous covariates, we used two standard methods. First, we assumed a linear rela-
tionship between the factor and the log relative hazard of an event (the ‘linear approach’).
Second, we categorized the factor into two or three groups according to predefined cutpoints
(the ‘step approach’). FPs were used as an additional method (the ‘FP approach’).

Univariate Models for age
To illustrate differences between the methods, we first consider the prognostic effect of age
(age) in univariate analysis. Whether age is really a prognostic factor was controversial at
the time of the original analysis of the GBSG study in the mid 1990s (see discussions in
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Figure 1.4 German Breast Cancer Study Group (GBSG) breast cancer data. Kaplan–Meier plot of
RFS probabilities with 95% pointwise confidence band. Numbers at risk and (in parentheses) failing in
each two-yearly interval are tabulated beneath the plot.

Sauerbrei et al. (1997; 1999)). In Table 1.2 we give deviance differences from the null model
and P -values for the univariate effect of age, according to several types of model.

According to the linear approach, age has no apparent effect on RFS (P > 0.4) and the
slope β̂ on age is small (see Figure 1.5). As is usual with the Cox model, the effect of age is
expressed as the log relative hazard with respect to an unspecified baseline hazard function.
With a quadratic model, the P -value is 0.01. With the two predefined cutpoints used in the
original analysis, the P -value is 0.15. Following discussions during the last decade and various
data-driven searches for ‘optimal’cutpoints, some researchers have argued in favor of 40 years
as a good cutpoint for age. The analysis based on this cutpoint suggests an effect of age with

Table 1.2 GBSG breast cancer data. Deviance differences from
the null model and P -values from univariate models assuming
different functional forms.

Model Deviance difference d.f. P -value

Linear 0.6 1 0.45
Quadratic 9.0 2 0.011
FP1(−1) 6.4 2 0.041
FP2(−2, −1) 17.6 4 0.002
Categorized (1)a 3.8 2 0.15
Categorized (2)b 5.3 1 0.021

a Predefined cutpoints 45 and 60 years.
b Selected cutpoint 40 years.
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Figure 1.5 GBSG breast cancer data. Fitted functions from six Cox models for age.

a P -value of 0.02. Interpretation is obviously difficult. The model implies that patients aged
30 or 39 years have the same risk, whereas the risk decreases substantially (estimated relative
hazard 0.66) for a patient aged 41 years. A patient of age 65 years has the same risk as a
41-year old, according to this model.

Use of the transformation age−2 provides evidence that age really is a prognostic factor.
This transformation gave the best fit within the class of eight FP1 transformations proposed
by Royston and Altman (1994). Within the more flexible class of FP2 transformations, a fur-
ther improvement in fit is obtained with the FP2 function β̂1age−2 + β̂2age−0.5. The overall
P -value for age in this model is 0.002. The functions from the six models shown in Figure 1.5
display major differences.

Multivariable Model-Building
So far, we have illustrated several problems when investigating the effect of one continuous
variable. However, in the real world the norm is that several covariates must be considered
simultaneously. Although univariate analyses of explanatory variables are a good starting
point, ultimately a multivariable analysis is required.

Sauerbrei and Royston (1999) developed three multivariable models for the GBSG data by
using backward elimination (BE) with a nominal P -value of 0.05. For continuous variables,
they considered linear functions, step functions with predefined cutpoints, and functions from
the FP class. We defined two dummy variables, gradd1 and gradd2, from the ordered
categorical factor grade. gradd1, nodes and pgr (progesterone receptor) were selected
in all three models. The multivariable FP (MFP) procedure identified age as an additional
prognostic factor. Its fitted curve is similar to the FP2 function from the univariate analysis
(see Figure 1.5). The deviances for the linear, step and FP models are 3478.5, 3441.6 and
3427.9 respectively, showing that the FP2 model fits best. The lower the deviance is, the better
the model fit is.
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Figure 1.6 GBSG breast cancer data. Fitted functions from three models for nodes, estimated within
multivariable Cox models. (Adapted from Sauerbrei et al. (1999) with permission from Macmillan
Publishers Ltd. British Journal of Cancer, copyright 1999.)

Besides age, the models differ in the functional form for nodes and pgr, whereas
gradd1 had a similar effect. The number of positive nodes has been identified as the most
important prognostic factor in many studies of early breast cancer. The hazard of an event
increases with the number of nodes. Such medical knowledge may be incorporated in the mod-
elling process by restricting the candidate functions to be monotonic. Here, we allowed only
FP1 functions (guaranteed monotonic) for nodes, the resulting function being log(nodes) –
see model II* of Sauerbrei and Royston (1999).

The three functions are shown in Figure 1.6. The step function is a rough approximation to
the FP (log) function; with more cutpoints, the approximation would be closer, but ‘noisier’.
The linear function seriously underestimates the hazard for a small number of nodes and
overestimates it for a large number.

The functions derived for the continuous variable pgr also differ (see Sauerbrei et al.
(1999)). In this example, the three ways of handling continuous variables in a multivariable ana-
lysis give different results and raise some general issues that are an important topic of our book.

1.2 ISSUES IN MODELLING CONTINUOUS PREDICTORS

1.2.1 Effects of Assumptions

An assumption of linearity may prevent one from recognizing a strong effect of a variable
(e.g. age), or to lead one to mismodel the effect (e.g. nodes). The popular cutpoint approach
introduces several well-known difficulties. Data-dependent determination of the cutpoint, at
the most extreme by using the ‘optimal’ cutpoint approach, results in P -values that are too
small and in an overestimation of the effect (Royston and Altman, 1994; Royston et al., 2006).
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In other words, severely biased results can be obtained. Predefined cutpoints may not reflect the
true, but unknown, functional relationship, and the number of cutpoints required is unknown.
Furthermore, cutpoint approaches do not use the full information from the data, and step
functions may conflict with biological principles, which demand smooth(er) functions. For
further discussion, see Section 3.4.

With the FP approach, much more information from the data is utilized. The question of
whether a nonlinear transformation improves the fit of a model is assessed systematically, with
further advantages of flexibility in handling continuous variables, predicated on established
statistical principles, transparency and ease of use.

1.2.2 Global versus Local Influence Models

Several approaches to modelling continuous covariates other than linear and FP functions are
available. In general, it is useful to distinguish between regression functions for a continuous
variable with the property of either global or local influence. For a function of x with the
global-influence property, the fit at a given value x0 of x may be relatively unaffected by local
perturbations of the response at x0, but the fit at points distant to x0 may be affected, perhaps
considerably. This property may be regarded by proponents of local-influence models as a fatal
flaw; see the discussion and the example given by Hastie and Tibshirani in Royston andAltman
(1994). A rigorous definition of the global-influence property has not to our knowledge been
framed, but such models are usually ‘parametric’ in nature. Examples include polynomials,
nonlinear models such as exponential and logistic functions, and FPs. By contrast, functions
with the local-influence property, including regression splines (de Boer 2001), smoothing
splines (Green and Silverman 1994), and kernel-based scatter-plot smoothers such as lowess
(Cleveland and Devlin, 1988), are typically ‘nonparametric’ in character. Perturbation of the
response at x0 usually greatly affects the fit at x0 but hardly affects it at points distant to x0.
One key argument favouring functions with global influence is their potential for use in future
applications and datasets. Without such an aim, functions with local influence might appear
the more attractive (Hand and Vinciotti, 2003).

Although FP functions retain the global-influence property, they are much more flexible
than polynomials. Indeed, low-dimensional FP curves may provide a satisfactory fit where
high-order polynomials fail (Royston and Altman, 1994). FPs are intermediate between poly-
nomials and nonlinear curves. They may be seen as a good compromise between ultra-flexible
but potentially unstable local-influence models and the relatively inflexible conventional poly-
nomials. The title of our book makes it clear that our main emphasis is on FPs, but we also
compare and discuss results from global- and local-influence models in several examples.

1.2.3 Disadvantages of Fractional Polynomial Modelling

Modelling with FP functions and our MFP approach also has difficulties. Perhaps the most
important aspects are insufficient power to detect a nonlinear function and the possible sens-
itivity to extreme values at either end of the distribution of a covariate. An example of the
latter is a ‘hook’ in the best FP2 function for nodes (see model II of Sauerbrei and Royston
(1999)). In the analysis in Section 1.1.4, we used only FP1 functions for nodes, whereas in
the original paper we discussed advantages of working with the preliminary transformation
enodes=exp(−0.12×nodes), guaranteeing a monotonic function with an asymptote. This
transformation was used in all our subsequent analyses of the breast cancer data and is also
often used in our book.
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The power issue has several aspects. Owing to insufficient sample size (in survival data,
too few events), variables with a modest or weak effect may not be selected; or, by default,
linear effects may be chosen instead of more realistic nonlinear functions. See Section 4.16
for some simulation results on the topic. Our approach to multivariable model-building may,
therefore, add to the problem of low power inherent in all types of statistical modelling in small
samples (see also Section 6.9.2). It is questionable whether variable selection makes sense
at all in small samples. In medium-sized studies, loss of power is a justifiable cost, balanced
by the benefits of combining variable selection with the selection of the functional form for
continuous variables.

1.2.4 Controlling Model Complexity

We prefer a simple model unless the data indicate the need for greater complexity. A simple
model transfers better to other settings and is more suited to practical use. The simplest dose–
response relationship is the linear model, and that is our default option in most modelling
situations. We would use an FP model if prior knowledge dictated such a model. In the
absence of prior knowledge, we would use an FP model if there was sufficient evidence of
nonlinearity within the data. The FP approach contrasts with local regression modelling (e.g.
splines, kernel smoothers, etc.), which often starts and ends with a complex model.

1.3 TYPES OF REGRESSION MODEL CONSIDERED

For the types of model that we use, textbooks describing all aspects in great detail are available.
Therefore, we introduce the models only very briefly, referring as necessary to other sources.
A modern text addressing many detailed issues in model building is Harrell (2001); however,
it appears to have been written for people already expert in regression modelling. Other
recommendable textbooks on regression analysis, referenced in our book, are Cohen et al.
(2003), DeMaris (2004), Vittinghof et al. (2005) and Weisberg (2005). The first two are based
in behavioural and social sciences.

Although we work with multiple linear regression models, in our own research and in
examples we are more concerned with important generalizations, including logistic and Cox
models, and generalized linear models (GLMs), of which logistic regression is a special case.
Such types of model are familiar tools nowadays, allowing the analyst to deal flexibly with
many different types of response variable.

Methods of variable selection and related aspects have usually been developed and investig-
ated for the multiple linear regression model. However, the methods, or at least their basic ideas,
are commonly transferred to GLMs and to models for survival data. Additional difficulties
may then arise; for example, obtaining satisfactory definitions of residuals or of equivalents
of the proportion of explained variation R2.

1.3.1 Normal-Errors Regression

For an individual with response y, the multiple linear regression model with normal errors
ε ∼ N(0, σ 2) and covariate vector x = (x1, . . . , xk) with k variables, may be written

y = E (y) + ε = β0 + β1x1 + · · · + βkxk + ε = β0 + xβ + ε (1.1)
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The linear predictor or ‘index’, η=β0+xβ, is an important quantity in multivariable modelling
(see also Section 1.3.5). Throughout our book, (1.1) is called the ‘normal-errors model’.
Although, as presented here, the model is linear in the covariates, models that are nonlinear in
x come under the same heading.

Suppose we have a set of n observations

(y1, x1) , . . . , (yn, xn) ≡ (y1, x11, x12, . . . , x1k) , . . . , (yn, xn1, xn2, . . . , xnk)

conforming to Equation (1.1). Here (but not in general), for simplicity in presenting the
equation for β̂, each covariate is assumed to have been centered around its observed mean.
Thus, for the j th covariate (j = 1, . . . , k) we have

∑n

i = 1 xij = 0. The principle of ordinary
least squares (OLS) estimation leads to the estimated regression coefficients

β̂ = (
β̂1, . . . , β̂k

)T = (
XTX

)−1
XTy

where the (i, j)th element of the matrix X is xij and y=(y1, . . . , yn)
T. The fitted or ‘predicted’

values are

ŷi = β̂0 + xi β̂

where

β̂0 = y = 1

n

n∑
i = 1

yi

Details of the theory of multiple linear regression may be found in a standard textbook such
as Draper and Smith (1998) or Weisberg (2005).

Transformation of the Response Variable
A major topic in our book is the use of transformed predictors to accommodate nonlinear
regression relationships. In contrast, we do not consider transformation of the response to
improve fit, e.g. using the well-known method of Box and Cox (1964). In all the examples
involving normal-errors models (see Tables A.1 and A.2), we assume that an appropriate
transformation of the response has already been derived if required. Thus, the symbol y

denotes the response variable in a given model, possibly after suitable transformation.

Residuals
OLS residuals are defined as

ri =yi − ŷi

Raw residuals are typically too ‘noisy’ to be helpful; therefore, in our book we are generally
concerned with smoothed residuals (see also Section 1.4). Mismodelling in Equation (1.1)
may appear as a systematic pattern in the local mean residual as a function of some covariate
x or the index η, and may be revealed by a smoothed scatter plot of the residuals on x (e.g.
Cleveland and Devlin, 1988, Sasieni and Royston, 1998). The mean residual at a given value
of x is interpretable as an estimate of the bias for Equation (1.1) in the mean value of y at x,
a quantity of direct interest. Usually, 95% pointwise CIs are shown on the plot, to help one
judge whether observed patterns are likely to be ‘real’ or due to chance.
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1.3.2 Logistic Regression

Logistic regression, a special case of a GLM (see Section 1.3.4), is concerned with modelling
binary responses. The multiple linear logistic regression model with covariates x1, . . . , xk

asserts that the probability π of occurrence of a binary event y of interest, e.g. death or
‘caseness’ in a case-control study, may be represented by

logit π = log
π

1 − π
= β0 +

k∑
j = 1

βjxj (1.2)

π/(1−π) is known as the odds of an event. Suppose y takes the values 1 for an event and 0 for
a nonevent. If (1.2) is correct, then y has a Bernoulli distribution with probability parameter
(and expected value) π .

In a model with just a single binary covariate x, taking the values 0 and 1, then logit π =β0

when x = 0 and β0 + β1 when x = 1. Let π(1) = logit(π |x = 1) and π(0) = logit(π |x = 0). It
follows that

logit π(1) − logit π(0) = log

(
π(1)

1 − π(1)

)
− log

(
π(0)

1 − π(0)

)
= (β0 + β1) − β0 = β1

= log

[(
π(1)

1 − π(1)

) / (
π(0)

1 − π(0)

)]
This shows the well-known result that the log odds ratio of an event when x = 1 compared
with that when x =0 equals the regression slope β1 (or that the odds ratio equals exp β1).

Having now a sample of n observations (y1, x1), . . . , (yn, xn), estimates of β0 and β are
found by maximum likelihood. Let η̂i = β̂0 +xβ̂i be the index (linear predictor) from Equation
(1.2). The probability that the ith observation is an event, i.e. Pr(yi =1|xi ), is estimated by

π̂i = exp (̂ηi)

1 + exp (̂ηi)

Further details of the theory and practice of logistic regression may be found in Hosmer and
Lemeshow (2000) or Collett (2003a).

Residuals
Several types of residual are available in logistic regression (e.g. Pearson and deviance). We
work with the simplest and most accessible, the raw residuals ri =yi−π̂i .As with normal-errors
regression, mismodeling in (1.2) may be revealed by a scatter plot smooth of the residuals on
x with 95% pointwise CIs, conceptually similar to Copas’s (1983a) suggestion of ‘plotting p

against x’. In logistic regression, the smoothed residual at x is an estimate of the bias for (1.2)
in the probability of an event given x.

1.3.3 Cox Regression

The ‘Cox model’ (Cox, 1972), also known as the proportional hazards model, is designed
for modelling censored survival data. In its simplest form, the Cox model with covariates
x1, . . . , xk describes the hazard of an event of interest at a time t > 0 after a starting point or
time origin t =0:
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λ (t; x) = λ0 (t) exp

(
k∑
1

βjxj

)

For a single binary covariate x with regression coefficient β1, the Cox model implies that

λ (t; 1)

λ (t; 0)
= λ0 (t) exp (β1 × 1)

λ0 (t) exp (β1 × 0)
= exp β1

The quantity λ(t; 1)/λ(t; 0) is known as the hazard ratio (HR) for x = 1 compared with
x=0. More generally, the HR is the hazard at x divided by that at x = 0. The HR
plays a central role in survival analysis, since it is a convenient summary of the relation-
ship between two entire survival curves. The crucial assumption of proportional hazards
(PHs) is equivalent to saying that the HR is independent of t . If a non-PH is detected,
then the Cox model may be extended in various ways to accommodate it (Therneau and
Grambsch, 2000). A strategy for assessing potential non-PH and modelling it is described in
Section 11.1.

A sample of n observations for survival analysis by a multivariable Cox model takes the
form (t1, x1, δ1), . . . , (tn, xn, δn), where δi is the ‘censoring indicator’. δi takes the value 1
when ti is an observed failure time and 0 when ti is right-censored (i.e. when the precise
time-to-event is unobserved, but is known to be ≥ ti). All times ti must be positive; values of
zero make no contribution to the estimation process. The parameter vector β is estimated by
maximum partial likelihood. Many theoretical and practical details of survival modelling may
be found in Hosmer and Lemeshow (1999) and Collett (2003b).

Residuals
We use martingale residuals and scaled Schoenfeld residuals. For details, see Hosmer and
Lemeshow (1999, pp. 163, 198) or Therneau and Grambsch (2000, pp. 80, 85). Unscaled
martingale residuals give a local estimate of the difference between the observed and predicted
number of events. The pattern of the (smoothed) martingale residuals provides information
on the functional form of a continuous covariate x in a model (Therneau et al., 1990). For
a proposed function of x, systematic patterns seen in a plot of the smoothed martingale
residuals against x indicate lack of fit, and may suggest how the chosen function of x may
be improved. Note that, for comparability with the function estimated from a Cox model, the
martingale residuals should be scaled by dividing by the ratio of the number of events to the
number of individuals (Therneau et al., 1990). Such scaling does not affect the pattern of
martingale residuals, only their magnitude, and is not applied in the relevant examples in our
book.

Scaled Schoenfeld residuals are based on score residuals and are useful in a visual assess-
ment of the PH assumption. Under PH, the mean of these residuals is zero, and is independent of
time.A systematic pattern in the smoothed residuals when plotted against time suggests a time-
varying effect of the covariate. The Grambsch–Therneau test (Grambsch and Therneau 1994)
may be applied to test the PH assumption formally, for specific covariates or globally over all
the covariates in the model.
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1.3.4 Generalized Linear Models

A GLM (McCullagh and Nelder, 1989) comprises a random component, a systematic com-
ponent and a link function which connects the two components. The response y is assumed
to have a probability density function from the exponential family, namely

exp

[
yθ − b (θ)

a (φ)
+ c (y, φ)

]
where θ is known as the natural parameter, φ is a dispersion (scale) parameter, and a(.), b(.)

and c(. , .) are known functions. This density function defines the random component. The
model also prescribes that the expectation μ of y is related to covariates x1, . . . , xk by g(μ)=η

where η=β0 +∑k

1 βjxj . The index or linear predictor η is the systematic component and g(.)

is known as the link function.
The mean μ is related to θ by μ = db/dθ . A convenient link for a given member of the

exponential family is the canonical link, in which g(μ) is chosen so that η = θ . For the
Bernoulli distribution, which underlies logistic regression with a binary outcome, we have
E(y) = Pr(y = 1). The usual choice in data analysis is the canonical link, which for logistic
regression is the logit (see Equation (1.2)); sometimes the probit or the complementary log–log
link is used. Standard practice is to define the model in terms of μ and η, so that θ plays no
further part.

Given choices for the random and systematic components and the link function, and a
sample y of n observations, estimation of the model parameters is done iteratively by maximum
likelihood.

Residuals
Again we use the simplest and most interpretable residuals for GLMs, the raw residuals
ri =yi − μ̂i . The ri are conceptually identical to the raw residuals yi − π̂i in logistic regression.
They are in fact scaled Pearson residuals (see McCullagh and Nelder (1989, equation (2.11),
p. 37)). Variations in var(ri) as a function of a covariate or the index ηi are not of concern,
since they are accommodated by the varying width of pointwise CIs given by a scatter-plot
smoother applied to the raw residuals.

1.3.5 Linear and Additive Predictors

A different type of generalization of Equation (1.1) is from models with a linear predictor
or index β0 + ∑k

1 βjxj to those with an additive predictor (also called an index) of the form
β0 + ∑k

1 fj (xj ), where fj (xj ) is a more complicated function of xj than βjxj . These models
apply only when xj is a continuous covariate, such as age or blood pressure. Examples of
types of fj (xj ) include polynomials, FPs, regression splines, smoothing splines, wavelets,
Fourier series, and so on. Hastie and Tibshirani (1990) devote a whole book to an approach
to regression modelling based on various types of additive function. Convenient classes of
functions to use are cubic smoothing splines (Green and Silverman, 1994) and regression
splines (de Boer 2001).

Note that fj (xj ) can be broken down into simpler parts, sometimes leading again to a
linear predictor. For example, the quadratic regression model for a single predictor x may
be written in additive format as β0 +f (x), where f (x) = β1x + β2x

2, or in linear format as
β0 + β1x + β2x

2. Be clear that the ‘linearity’ in the linear format relates to the two variables
x and x2. The quadratic model is additive in x, nonlinear in x, and linear in (x, x2).



ROLE OF RESIDUALS 15

1.4 ROLE OF RESIDUALS

1.4.1 Uses of Residuals

Residuals have many roles in statistics. Most of them are connected with some form of model
criticism (e.g. see Belsley et al. (1980)). In our book, we use residuals almost exclusively as
a graphical tool to study the (lack of) fit of a function of a continuous predictor.

Preferred types of residual for the normal-errors, logistic and Cox models were discussed
in Section 1.3. There are arguments favouring different residuals for different purposes. For
example, residuals which are identically distributed under the assumption that the model is
correct are particularly suitable for detecting outliers in the response. Residuals which are
easily interpretable when smoothed are advantageous for detecting meaningful lack of fit of a
function. For further discussion of residuals, please refer to Belsley et al. (1980).

Examples of smoothed residuals from models with a single predictor have already been
presented (e.g. Figures 1.1 and 1.2). Such plots are useful for picking up anomalies in the fit.
We use a univariate running-line smoother (Fan and Gijbels, 1996), implemented for Stata
in the command running (Sasieni et al., 2005). We use the default amount of smoothing
provided by running. Running-line smoothers of residuals provide a detailed picture of the
relationship. As a result, they can give quite ‘noisy’ results, but the message from the data, of
a lack of fit or otherwise, is usually sufficiently clear.

1.4.2 Graphical Analysis of Residuals

Generically, our favoured graphical analysis of residuals for a continuous predictor x,
exemplified in Figures 1.1 and 1.2, has the following elements combined into a single plot:

1. A smooth of the residuals as a function of x, plotted as a solid line.
2. A pointwise 95% CI for the smooth, plotted as a shaded area.
3. A lightly shaded box within the plot region, bounded vertically by the 2.5th and 97.5th

centiles of the observed distribution of x and horizontally by a convenient range of values.
The box shows where most (95%) of the observations of x lie. The aim is to down-weight
the visual impact of extreme values of x on the estimated function of x. The data are usually
sparse near extreme values of x, and ‘end effects’ (unstable estimates of the function) are
most likely to occur there.

4. A horizontal line representing y = 0, the expected value of the residuals if the model is
correct.

5. (Optionally) a scatter plot of the raw residuals against x. This component may be omitted
if the variation among the residuals visually overwhelms the smooth and its CI. To enhance
legibility, martingale residuals from time-to-event models that are less than −1 may be
truncated at −1.

Note that the pointwise 95% CIs should be interpreted cautiously, since they do not represent
a global confidence region. For example, the value 0 may be excluded for some small range
of x values, even when there is no serious lack of fit.

In a multivariable model, a plot of smoothed residuals may be drawn for every relevant
predictor, perhaps including those not selected in the model. When feasible, a composite
plot showing all such smooths in a single graphic is helpful. An example is Figure 6.5 (see
Section 6.5.2).
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1.5 ROLE OF SUBJECT-MATTER KNOWLEDGE IN MODEL DEVELOPMENT

The consensus is that subject-matter knowledge should generally guide model building.
A study should be carefully planned, guided by the research questions and taking into account
the methods envisaged for analysing the data. In randomized trials, the main research question
is precisely specified – for example, is the new treatment better than the current standard with
a hazard ratio of < 0.75? A detailed analysis plan is written before the analysis starts.

The situation is more complex and difficult with observational studies. At first glance, the
research question may still be simple, e.g. whether there is an association between an exposure
and the probability of developing a disease, adjusting for known confounders. However, this
simple question may pose at least two serious challenges to the analyst. First, the relationship
between a continuous exposure and the disease probability may have many possible functional
forms. Does subject-matter knowledge support a particular functional form? That is unlikely
when a ‘new’ exposure for a disease is under investigation. Assuming linearity is certainly a
good starting point, but it must be checked and should be abandoned if the data ‘say’otherwise.
Second, what are the ‘known’ confounders in a given setting, and in what form should they
be included in the model? If they are indeed ‘known’, why does it often happen that different
sets of confounders are used in different studies? A small number of confounders may be
prespecified, but why are many more variables typically collected? The potential problems
of the statistical analysis increase if it is necessary to determine which of a large number of
variables are associated with the outcome in a multivariable context (a typical question in
studies of prognosis). Because subject-matter knowledge is typically limited or at best fragile,
data-dependent model building is necessary (Harrell, 2001).

Unless stated otherwise, we assume in our book that subject-matter knowledge is so limited
that it does not affect model building. However, when such knowledge does exist, analyses
using fractional polynomials can easily be adapted to include it. For example, in Sauerbrei and
Royston (1999) we noted that an FP function seemed biologically implausible and suggested
a way to ensure that the estimated function was monotonic with an asymptote. Variables
should sometimes be included in a model without being statistically significant, or should be
excluded despite statistical significance. The former situation is more common with ‘known’
confounders, whereas the latter can happen if an ‘expensive-to-measure’ variable adds little
to the model fit or to the explained variation. These two situations can easily be handled by
‘forcing’ variable(s) into or out of the model.

Sometimes, subject-matter knowledge may require a restricted class of nonlinear functions
for certain variables (e.g. monotonic functions). When this is the case, the power to detect
variables with a weak influence is increased by choosing the FP1 class as the most complex
allowed functional form. See some simulation results in Section 4.16 and a fuller discussion
in Section 6.9.2.

Most analyses of observational studies rely on a blend of subject-matter knowledge and
data-dependent decisions. Initial decisions include grouping of categorical variables or, for
continuous variables, considering how to handle extreme values or outliers (see Section 2.3).
The concerns are specific to a dataset, but where possible the decisions should be based on
subject-matter knowledge. The aims in general are to obtain an ‘optimal’ fit to the data, inter-
pretable covariate effects, consistency with subject-matter knowledge where available, general
usability by others, and transportability to other settings (external validation). In summary,
multivariable model-building has elements of art in the attempt to provide satisfactory answers
to more or less vague questions through the analysis of the data at hand under much uncertainty.
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1.6 SCOPE OF MODEL BUILDING IN OUR BOOK

The techniques discussed in our book are intended and appear to work best for model building
under certain conditions, as summarized in Table 1.3.

Table 1.3 Issues in building regression models, when the aim is to identify influential variables and to
determine the functional form for continuous variables.

Issue Assumption in our
book (unless stated
otherwise)

Reason for the assumption

Subject matter
knowledge

No knowledge Subject-matter knowledge should always be
incorporated in the model-building process or should
even guide an analysis. However, often it is limited or
nonexistent, and data-dependent model building is
required

Number of
variables

About 5 to 30 With a smaller number of variables, selection may
not be required. With many more variables (e.g.
high-dimensional data), the approaches may no longer
be feasible or will require (substantial) modification

Correlation
structure

Correlations are
not ‘very’ strong
(e.g. correlation
coefficient below
0.7)

Stronger correlations often appear in fields such as
econometrics, less commonly in medicine. For large
correlations, nonstatistical criteria may be used to select
a variable. Alternatively, a ‘representative’, e.g. a linear
combination of the correlated variables, may be chosen

Sample size At least 10
observations per
variable

With a (much) smaller sample size, selection bias and
model instability become major issues. An otherwise
satisfactory approach to variable and/or function
selection may fail, or may require extension (e.g.
shrinkage to correct for selection bias)

Completeness of
data

No missing data Particularly with multivariable data, missing covariate
data introduces many additional problems. Not
considered here

Variable selection
procedure

Only sequential
and all-subsets
selection strategies
are considered

Stepwise and all-subsets procedures are the main types
used in practice. BE and an appropriate choice of
significance level gives results similar to all-subsets
selection

Functional form of
continuous
covariates

Full information
from the covariate
is used

Categorizing continuous variables should be avoided. A
linear function is often justifiable, but sometimes may
not fit the data. Check with FPs or splines whether
non-linear functions markedly improve the fit

Interaction
between
covariates

No interactions Investigation of interactions complicates multivariable
model-building. Investigation of interactions should
take subject-matter knowledge into account

(Adapted from Sauerbrei et al. (2007a, Table 1) and Sauerbrei et al. (1999) with permission from John Wiley &
Sons Ltd.)
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The restriction to no interactions is applied rigorously in Chapters 1–6, but is lifted in
Chapter 7 and subsequently. Relaxation of the assumptions is possible in some cases, e.g.
the number of variables may be about 40, or 9 observations per variable are acceptable. The
limitations make it easier to answer the main research questions, but do not seriously reduce
the scope of what may be done and the recommendations for practice (see Section 12.2). Also,
in some of our examples we violate some of the assumptions.

1.7 MODELLING PREFERENCES

1.7.1 General Issues

The application of complex statistical methods for the development of regression models has
greatly increased in recent years. Advances in statistical methodology now allow us to create
and estimate more realistic models than ever before, and the necessary computer programs are
often available. By contrast, however, the properties of many model-building procedures are
still unknown, and the few comparisons that do exist tend to be based on (small) simulation
studies. This unfortunate situation is a key reason why tastes in model building vary so much
between statisticians.

The aims of an investigation play an important role in every statistical analysis. At least
in the health sciences, there seems to be a consensus that subject-matter knowledge must be
incorporated in such analyses. With some minor modifications, this can usually be done with
all the procedures discussed in our book. However, practical experience shows that, in most
analyses of observational studies, data-driven model building still plays an important role.
Some variables are inevitably chosen mainly by statistical principles – essentially, P -values
for including or excluding variables, or information criteria. The definition of a ‘best’ strategy
to produce a model that has good predictive properties in new data is difficult.

1.7.2 Criteria for a Good Model

It is important to distinguish between two main aims when creating a model. The first is
prediction, with little consideration of the model structure; the second is explanation, where we
try to identify influential predictors and gain insight into the relationship between the predictors
and the outcome. Much published research focuses on prediction, in which model fit and
mean-square prediction error are the main criteria for model adequacy. With our background
in clinical epidemiology, the second aim is more appropriate. Studies are done to investigate
whether particular variables are prognostically or diagnostically important, or are associated
with an increased risk of some outcome. For continuous predictors, the shape of the function
is often of interest, e.g. whether there is an increasing trend or a plateau at high values of x.
Because disease causation is invariably multifactorial, such assessments must be done in a
multivariable context. In reality, many variables may be considered as potential predictors,
but only a few have a relevant effect. The task is to identify them. Often, generalizability
and practical usefulness must also be kept in mind when developing a model. Consider, for
example, a prognostic model comprising many variables. All constituent variables would have
to be measured in an identical or at least in a similar way, even when their effects are very
small. Such a model is impractical, therefore ‘not clinically useful’ and likely to be ‘quickly
forgotten’ (Wyatt and Altman, 1995). In reality, a model satisfying the second aim, although
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not providing an optimal predictor in the sense of minimizing mean-square error or similar
criteria, typically has only slightly inferior performance. A model that fits the current dataset
well may be too data driven to reflect the underlying relationships adequately.

The distinction between prediction and interest in the effects of individual variables was
stressed by Copas (1983b). He noted that the loss functions are different, and stated that a
good predictor ‘may include variables which are not significant, exclude others which are, and
may involve coefficients which are systematically biased’. Such a predictor would clearly fail
to satisfy the explanatory aim of many studies. Apart from these general considerations, no
clear guidance on how to develop a multivariable model fulfilling such an aim appears to be
available.

1.7.3 Personal Preferences

Our general philosophy is based on experience in real applications and simulation studies,
and on investigations of model stability by bootstrap resampling (Efron, 1979; Sauerbrei
and Schumacher, 1992; Sauerbrei, 1999; Royston and Sauerbrei, 2003; Ambler and Royston,
2001). It is influenced by the potential use of our models in future applications, an important
aim of most of the models we have developed so far. These considerations have led us to
prefer simple models unless the data indicate the need for greater complexity. In the context
of time-series forecasting, Chatfield (2002) states that the cost of achieving an excellent fit
to the current data may be a poor fit to future data, and ‘this emphasizes the importance of
checking any model with new data . . . and explains my preference for simple models’. Hand
(2006) expresses similar views regarding classification methods.

A distinctive feature of FP modelling is the availability of a rigorous procedure for selecting
variables and functions. The principles for selecting an FP function are easily explained.
Combination with BE results in a procedure applicable without detailed expert knowledge.

Arguments favouring BE over other stepwise methods have been given by Mantel
(1970). Sauerbrei (1999) argued that BE(0.157) (i.e. BE using a nominal significance level
of 0.157) may be used as a substitute for all-subsets procedures with Cp or Akaike’s
information criterion (AIC). His conclusion was based on asymptotic and simulation res-
ults on the significance level for all-subsets procedures, on simulation results for the
stepwise methods, and on empirical comparisons in particular datasets (Teräsvirta and
Mellin, 1986; Sauerbrei, 1992; Sauerbrei, 1993). Models selected with BE(0.157) and AIC
usually have at most minor differences (Blettner and Sauerbrei, 1993; Sauerbrei, 1993). For
further discussion, see Section 2.6. We consider BE to be a good candidate for a sensible
variable selection strategy. We also believe that the class of FP functions is a good candidate
for finding nonlinear relationships with continuous covariates and at the same time for gener-
ating interpretable and transferable (generally useful) models (Royston and Sauerbrei, 2005;
Sauerbrei et al., 2007a).

The MFP procedure combines these two components (selection of variables and functions).
It is computationally not too demanding, statistically comprehensible, and may be applied to
most types of regression model. Furthermore, it addresses the two main tasks in multivariable
model-building: elimination of ‘unimportant’ variables and selection of a ‘reasonable’ dose–
response function for continuous variables. We are well aware that every model can only be
a crude approximation to the complex relationships existing in reality. We do not aim to fit
the data in any sense ‘optimally’. A model that includes at least the strong predictors and
whose unknown functional form seems to be ‘roughly’ modelled in a plausible way is, from
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our point of view, acceptable. Since the MFP modelling process is comprehensible without
detailed expert knowledge, the resulting models are interpretable and transferable. We consider
MFP modelling to be an important pragmatic approach to determine multivariable models for
continuous variables. In a similar vein, Hand (2006) observes that ‘more complicated models
often require tuning . . . and, in general, experts are more able to obtain good results than are
inexperienced users. On the other hand, simple models can often be applied successfully by
inexperienced users’.

In the MFP approach, the nominal significance levels are the tuning parameters, which
largely determine the nature of the resulting model with respect to both the number of vari-
ables chosen and the complexity of any selected functions. Depending on the aim of a study,
significance levels, which may be different for selection of variables and of complexity of
functions, may be chosen. For example, when determining adjustment factors in an epidemi-
ological study, a nominal P -value of 0.2 may be sensible, whereas in a study developing a
multivariable diagnostic index a P -value of 0.01 may be more appropriate.

MFP has been progressively extended to perform wider tasks, e.g. modelling interactions
between a categorical and continuous covariate (Royston and Sauerbrei 2004a), and determin-
ing time-varying functions of regression coefficients in the Cox model (Sauerbrei et al., 2007c).
We are well aware that data-dependent modelling ignores the uncertainties of the model-
building process and leads to potentially biased estimates of parameters and underestimation
of their standard errors.

1.8 GENERAL NOTATION

Here, we provide a concise explanation of general notation used in our book. We have kept
mathematical exposition and notation to an absolute minimum throughout.

In general, x denotes a predictor (covariate, independent variable, explanatory variable, risk
factor, etc.) and y an outcome variable (response, dependent variable, etc.). We use lowercase
letters (e.g. x, β) to denote scalar quantities. Uppercase letters are used sparingly, sometimes
denoting models (e.g. M1). Lowercase bold letters (e.g. x, β, p) are used for (row) vectors. The
expression η=β0 +xβ denotes the ‘index’ of a model (see Section 1.3.5), where x and β, each
vectors with k elements, are explanatory variables and regression parameters of the model
respectively, and β0 is the intercept. Strictly speaking, xβ should be written as xβT, where the
superscript T denotes vector or matrix transpose, but no ambiguity results from omitting the
transpose.

Expectation is denoted by E(), variance by var(), standard deviation by SD or SD() and
standard error by SE or SE(), and ninety-five percent confidence interval by 95% CI. The
distribution of y is sometimes indexed by μ = E(y), or by an equivalent parameter g(μ),
where g is a monotonic function known as the link function (see Section 1.3.4).

The quantity D denotes the ‘deviance’ or minus twice the (maximized) log likelihood of
a model. A Gaussian or normal distribution with mean μ and variance σ 2 is denoted by
N(μ, σ 2). The chi-squared distribution with d degrees of freedom (d.f.) is denoted by χ 2

d
, and

Fm,n refers to the F -distribution with m and n degrees of freedom. A chi-square test statistic
obtained from a likelihood ratio test is denoted by χ 2.

When describing examples and case studies, variable names such as age and pgr are
written in typewriter font to distinguish them from the rest of the text. Sometimes, for brevity,
variable names are given in algebraic form (e.g. x1, x5 − x8).



GENERAL NOTATION 21

Notation relating to model selection algorithms with nominal significance levels α or
(α1, α2), e.g. BE(α), FSP(α), MFP(α1, α2), is introduced when required in Chapters 2, 4
and 6. Notation specific to FPs is introduced in Section 4.3.

When no confusion can arise, the same notation may be used for different quantities. For
example, x∗ denotes scaled x in Section 4.11 and a negative exponential transformation in
Section 5.6.2.




