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SUMMARY

The action of type I interferons in the central nervous
system (CNS) during autoimmunity is largely un-
known. Here, we demonstrate elevated interferon
beta concentrations in the CNS, but not blood, of
mice with experimental autoimmune encephalomy-
elitis (EAE), a model for CNS autoimmunity. Further-
more, mice devoid of the broadly expressed type I
IFN receptor (IFNAR) developed exacerbated clinical
disease accompanied by a markedly higher inflam-
mation, demyelination, and lethality without shifting
the T helper 17 (Th17) or Th1 cell immune response.
Whereas adoptive transfer of encephalitogenic T cells
led to enhanced disease in Ifnar1�/�mice, newly cre-
ated conditional mice with B or T lymphocyte-specific
IFNAR ablation showed normal EAE. The engage-
ment of IFNAR on neuroectodermal CNS cells had
no protective effect. In contrast, absence of IFNAR
on myeloid cells led to severe disease with an en-
hanced effector phase and increased lethality, indi-
cating a distinct protective function of type I IFNs
during autoimmune inflammation of the CNS.

INTRODUCTION

Multiple sclerosis (MS) is considered to be an inflammatory

demyelinating disease of the central nervous system (CNS),

and its etiology remains unclear (Steinman, 1996). This condition

is represented in the well-established animal model for brain

inflammation and MS, known as experimental autoimmune en-

cephalomyelitis (EAE), which is a vital tool to study the neuroim-

munological events related to the disease (Owens et al., 2001)

and resembles many facets of MS (Gold et al., 2006).
Therapeutic application of interferon gamma (IFN-g) induced

acute relapses in MS patients (Panitch et al., 1987), supporting

the notion that proinflammatory T helper type 1 (Th1) cell cyto-

kines play a crucial role in the immunopathogenesis of MS. In

contrast, the type I interferon beta (IFN-b) reduces the frequency

of clinical exacerbations by about 35% and delays the progres-

sion of disability in relapsing-remitting MS. Similarly, the lack

of the IFN-b gene in mice strongly enhanced the course of EAE

(Teige et al., 2003), and type I interferons can downregulate

EAE in mice and rats (Brod and Khan, 1996; Brod and Burns,

1994), indicating that IFN-b modulates the disease activity in

MS and EAE in a similar fashion.

Regarding the underlying mechanism, earlier studies have

suggested several possibilities, including inhibition of Th1 cell

development (McRae et al., 1998), induction of Th2 cell immune

deviation (Kozovska et al., 1999), restoration of function of the

disrupted blood-brain barrier (Stone et al., 1995), and downregu-

lation of IFN-g-induced expression of class II major histocom-

patibility complex (MHC) molecules on CNS cells (Satoh et al.,

1995). In the light of recent data on IFN-b-induced gene profiles

(Satoh et al., 2006; Wandinger et al., 2001), however, it is gener-

ally accepted that IFN-b reveals extremely complex actions that

cannot only be reduced to a simple Th2 cell shift (Frohman et al.,

2006).

To date, therapeutic intervention using IFN-b is a major treat-

ment option for MS. However, in up to one-third of the cases, the

efficiacy of IFN-b therapy ceases after one year, partly because

of the fact that many of these patients develop autoantibodies

against IFN-b (Waubant et al., 2003). Furthermore, a substantial

proportion of the patients discontinue IFN-b treatment because

of multiple serious side effects, such as skin reactions, flu-like

symptoms, leukocytopenia, liver dysfunction, depression, elevated

suicide rate, and amenorrhea (Neilley et al., 1996).

These adverse effects stress the need to better understand

how IFN-b actually functions on the molecular and cellular level

in an in vivo setting. Previous studies relied on simplified in vitro
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experiments. Progress with the EAE model, on the other hand,

was hampered by the fact that the respective receptor of type

1 interferons (IFN-as and IFN-b), IFNAR, is broadly expressed

by virtually all cell types and tissues, including immune cells

(Pogue et al., 2004), endothelial cells (Floris et al., 2002), and

CNS-resident neurons and glia (Okada et al., 2005; Heine

et al., 2006).

To identify the actual cell type targeted by disease-associated

IFN-b locally produced in the brain, we conditionally deleted

IFNAR from the CNS, lymphocytes, or myeloid cells and studied

the pathogenesis of CNS autoimmunity in such mice. Our inves-

tigations provide insights into disease-limiting mechanisms that

might open new avenues to more cell-specific IFN-b-based ther-

apies minimizing severe adverse effects. Despite being broadly

expressed, INFAR was determined to have a unique role on

myeloid cells for modulating CNS autoimmunity.

RESULTS

Local IFN-b Production and IFNAR Signaling
within the CNS during Autoimmunity
We first assessed endogenous IFN-b production in the CNS and

blood of MOG35–55 immunized mice by an enzyme-linked immu-

noabsorbent assay (ELISA) method on day 7, when animals were

still free of disease symptoms (score 0), and on day 18, when

animals presented with full EAE symptoms (scores > 1.5). Sick

individuals showed increased amounts of IFN-b levels in the

CNS, whereas IFN-b in the blood of both groups was below

the detection limit (Figure 1A).

To assess IFNAR signaling triggered by endogenously pro-

duced IFN-b, we extracted total RNA from the spinal cord of

healthy (score0),moderatelysick (scores 0.5–1.5), and severelyaf-

fected (scores > 2.5) mice and monitored the expression of IFNAR-

dependent genes by RNA blotting. Even in moderately sick mice,

enhanced hybridization signals were found for interferon regula-

tory factor 1 (IRF1), interferon regulatory factor 7 (IRF7), interferon

stimulated gene 15 (ISG 15), and 20,50oligoadenylatsynthetase

(20,50OAS) (Figure 1B). Collectively, these data indicate that even

at the onset of the first clinical symptoms, when leukocyte influx

can first be monitored, IFN-b is produced locally in the brain in

biologically relevant quantities.

Disease-Modulating Role of IFNAR during
the Effector Phase of EAE
To examine the impact of IFNAR signaling on the disease course

of EAE, we immunized Ifnar1�/� and wild-type (WT) mice. All

animals developed EAE with an incidence of 100% and a similar

mean disease onset (Table S1 available online). However, in

Ifnar1�/� animals, the effector phase of disease was changed

dramatically, with an increased lethality rate and an augmented

mean maximal clinical score (Figure 2A, Table S1, Movies S1

and S2).

IFNAR-deficient spinal cords showed histologically at 35 days

after immunization a plethora of infiltrating MAC-3+ macro-

phages and microglia in the submeningeal and perivascular

space, as well as in the CNS parenchyma, which were, upon

quantification of the histological sections, significantly upregu-

lated (p < 0.05) (Figures 2B and 2C right panel). Importantly,

this increased influx of macrophages was accompanied by an
676 Immunity 28, 675–686, May 2008 ª2008 Elsevier Inc.
invasion of numerically unchanged CD3+ lymphocytes. The my-

elin damage, however, was increased in Ifnar1�/� animals

(Figure 2C, left panel, p < 0.05). This distinct pathological infiltra-

tion reflected clinical characteristics of Ifnar1�/� mice showing

increased disease burden.

Th17 cells are now widely believed to be the main pathogenic

population during autoimmune CNS inflammation (Steinman,

2007). We therefore quantified interleukin-17 (IL-17)-producing

myelin oligodendrocyte glycoprotein (MOG)-reactive T cells in

Figure 1. CNS-Endogenous Induction of IFN-b and IFNAR Signaling
during Autoimmune Disease

(A) Measurement of IFN-b production in the CNS (gray bars) and blood sam-

ples (black bars) of immunized, nonsick animals (score 0) or sick animals

(score > 1.5). Data represent the means out of four animals in each group ±

the standard error of the mean (SEM).

(B) RNA blot analysis showing disease-associated induction of IFNAR-depen-

dent genes in the CNS of eight individual mice that are either healthy (immu-

nized, score 0), slightly (score 0.5–1.5) or severely EAE sick (score > 2.5).

IFNAR-induced genes were interferon regulatory factor 1 (IRF1), interferon reg-

ulatory factor 7 (IRF7), 20-50 oligoadenylatsynthetase (20,50 -OAS), and inter-

feron-stimulated gene 15 (ISG15).
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the CNS at day 14 as well as in lymph node cells at days 7 and 14

(Figure 2D, Figure S1). Enzyme-linked immunospot analysis did

not show any apparent changes in the IL-17, IL-4, and IFN-g

profiles in antigen-specific T cells. For further determination of

the impact of IFNAR expression on the cytokine profile within

the CNS, mice were sacrificed at the disease peak, and expres-

sion of chemoattractant factors and cytokines were examined by

real-time polymerase chain reaction (PCR) (Figure 2E). Despite

a trend toward generally elevated amounts of cytokines in

IFNAR-deficient mice, IFN-g, IL-12p35, STAT6, IL-13, TGF-b1,

IL-6, and IL-23p19 were not significantly increased, suggesting

that more severe EAE in the absence of IFNAR is not linked to

a certain Th1, Th2, or Th17 cell bias throughout the disease

course. In contrast, chemokines recruiting monocytes and

macrophages such as CCL2 and CXCL10 were found to be

increased in Ifnar1�/� mice (p < 0.05). These data revealed that

IFNAR is important for the modulation of the effector phase of

autoimmunity, and its absence facilitates macrophage invasion

into the CNS accompanied by higher demyelination and produc-

tion of chemokines without shifting the T cell profile.

CNS-Specific IFNAR Expression Is Dispensable
for the Induction and Progression of EAE
To assess the role and function of IFNAR during the EAE effector

phase, which essentially occurs within the CNS, encephalito-

genic MOG-reactive lymphocytes were isolated from WT mice

and adoptively transferred into either WT or Ifnar1�/� recipient

mice. Ifnar1�/� mice developed EAE with earlier disease onset

and increased severity, as well as higher incidence rate (p <

0.05, Figure 3 and Table S2). These data indicate that IFNAR is

involved in the local maintenance of encephalitogenicity during

the effector phase of EAE within the CNS.

To determine whether IFNAR engagement of CNS-resident

cells limits the progression of autoimmune inflammation,

we crossed conditional (floxed) IFNAR mice with a transgenic

mouse line expressing the Cre recombinase under the control

of the nestin promoter. Southern-blot analysis of DNA isolated

from different tissues of an Ifnar1fl/fl NesCre mouse showed effi-

cient deletion of the gene fragment flanked by loxP in the CNS

tissue and isolated astrocytes, whereas recombination was

absent in the spleen and in primary microglia (Figure 4A).

Upon immunization, all Ifnar1fl/fl NesCre mice developed neu-

rological signs of disease such as tail weakness and paralysis,

starting about 13–16 days after immunization. (Figure 4B, Table

S3), indicating that the priming phase of disease was unaltered.

Furthermore, the mean maximal scores were similar in both

groups, suggesting that IFNAR expression on CNS cells is dis-

pensable in EAE. Examination of the CNS revealed no obvious

differences in either the pattern of mononuclear infiltration or

the amount of macrophages or microglia, and T lymphocytes

(Figure 4C). Because the Cre transgene is active in all neuroec-

todermal cells, we also examined disease-associated pathology

in axons (Figure 4D), oligodendrocytes (Figure 4E), and astro-

cytes (Figure 4F) and found no marked changes (Figures 4D–

4F). Overall, these data indicated that the brain-specific IFNAR

is not an essential modulator of the degree and composition of

inflammation, demyelination, and axonal damage during sterile

autoimmune CNS disease.
IFNAR Engagement on Lymphocytes Has No Impact
on T Cell Priming or EAE Development
We further studied the direct impact of IFN-b on lymphocytes in

mice with a T cell-specific IFNAR deletion (Ifnar1fl/fl CD4Cre) and

their respective negative littermate controls (Ifnar1fl/fl). The ana-

lyzed groups developed disease with a similar incidence and

a comparable mean disease onset and severity (Figure 5, Table

S3). Notably, there were 3 days during the priming phase in

which T cell-specific Ifnar1�/� mice had a higher clinical score

(p < 0.05, Figure 5B). Spinal cord sections, however, revealed

a comparable amount of macrophages and microglia and T lym-

phocytes in Ifnar1fl/fl CD4Cre mice (Figure 5C). Accordingly,

myelin damage was similar in this line.

To determine whether loss of IFNAR on T cells had an overall

impact on antigen (Ag)-driven responses, we immunized mice

with either MOG35–55 peptide or keyhole limpet haemocyanine

(KLH) emulsified in complete freund adjuvant (CFA) and as-

sessed the capacity of lymphocytes to respond to their cognate

Ag in a recall assay. Lymphocytes from Ifnar1fl/fl CD4Cre mice

developed comparable proliferative responses and produced

similar amounts of encephalitogenic IL-17 (Figures 5D and 5E).

In addition, in Ifnar1fl/fl CD4Cre mice, CNS-infiltrating T lympho-

cytes revealed unchanged amounts of the activation markers

CD62L and CD44 (Figure 5F). These results clearly demonstrated

that IFNAR triggering of T cells had no impact on the induction

and progression of CNS autoimmunity.

Because B cells also carry the IFNAR (Pogue et al., 2004), B

cell-specific Ifnar1�/�mice (Ifnar1fl/fl CD19Cre) and their respec-

tive littermate controls (Ifnar1fl/fl) were challenged with MOG in

CFA. No clinical differences were observed between the groups

regarding their clinical parameters Figure S3, Table S3). As

expected, concomitant CNS pathology was similar in terms of

distribution as well as amount of infiltrating macrophages, T lym-

phocytes, and demyelination (Figure S3C).

To test whether B cells could produce antigen-specific IL-10

in the absence of IFNAR, we purified splenic B cells from mice

that were in the effector phase of EAE. To ensure B cell-receptor

crosslinking, we coated tissue-culture wells with MOG35�55

before adding the purified B cells. B cells incubated with the an-

tigen alone did not produce IL-10. Addition of an agonistic CD40

antibody to the cultures, however, resulted in production of

IL-10, which could be further increased in combination with the

MOG antigen (Figure S3D). Notably, this B cell-specific IL-10

production was independent of the presence of IFNAR. Taken

together, these results clearly show that IFNAR engagement

on lymphocytes by endogenous type I IFN had no impact on

EAE development.

Distinct and Nonredundant In Vivo Functions
of IFNAR on Myeloid Cells Determine Disease Course
Myeloid cells are potential targets for endogenously produced

IFN-b and might therefore function as cells limiting disease dur-

ing CNS autoimmunity. To address this question experimentally,

we first analyzed Ifnar1fl/fl LysMCre mice for cell specificity of

IFNAR deletion (Figure 6A, Figures S2A and S4). As expected,

CD11b+ cells showed a strong deletion of IFNAR on both the

DNA and protein level. Because the LysM Cre transgene is po-

tentially expressed in many myeloid cell types, we characterized

IFNAR depletion in specific CD11b+ subsets (Figure S2B). We
Immunity 28, 675–686, May 2008 ª2008 Elsevier Inc. 677
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Figure 2. IFNAR Signaling Is Critical for the Effector Phase of Disease, CNS Pathology, and the Induction of Myeloattractants

(A) EAE was induced by active immunization of Ifnar1+/+ (open squares) and Ifnar1�/� (filled circles) mice, and disease was scored as described in the Experi-

mental Procedures. Each data point represents the mean of at least seven animals. Statistically significant data points are marked with asterisks (p < 0.05).

(B and C) Characterization of infiltrates and demyelination in IFNAR-deficient mice. (B) shows histology of spinal cord sections with CD3 for T lympho-

cytes, MAC-3 for macrophages, and luxol fast blue (LFB) for demyelination (scale bar represents 200 mm). (C) shows quantification of demyelination
678 Immunity 28, 675–686, May 2008 ª2008 Elsevier Inc.
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found substantial IFNAR deletion on CD11b+Ly-6Clo resident

monocytes (r monocytes) as well as on CD11b+Ly-6Chi inflam-

matory blood monocytes (i monocytes) but importantly not

on CD11c+CD11b�B220+ plasmacytoid dendritic cells (pDCs)

or CD11c+CD11b+B220� myeloid DCs (mDCs). CD11b+Gr-1+

granulocytes, however, revealed an IFNAR deletion as well.

Notably, deletion of IFNAR led to a strong decrease of phosphor-

ylated STAT1 protein in CD11b+ splenocytes upon stimulation

with IFN-b in Ifnar1fl/fl LysMCre cells compared to WT CD11b+

cells (Figure S2C).

After immunization of mice, a similar disease onset with a dis-

ease incidence comparable to WT mice was observed (Fig-

ure 6B, Table S3). Surprisingly, clinical disease was clearly ag-

gravated during the effector phase in Ifnar1fl/fl LysMCre mice,

leading to a lethality rate of 33%, whereas all Ifnar1fl/fl mice sur-

vived (p < 0.05). Accordingly, the mean clinical score was signif-

icantly higher in Ifnar1fl/fl LysMCre animals (p < 0.05, Figure 6B,

Table S3). The phenotype of this line largely mirrors the disease

course seen in Ifnar1�/�mice. Importantly, the generation of en-

cephalitogenic MOG-specific T lymphocytes was unaltered even

at early time points in Ifnar1fl/fl LysMCre mice, indicating that

LysM expressing IFNAR+ cells were not essential for priming

(Figure 6C, Figure S5).

We next used quantitative real-time PCR analysis to determine

the expression of proinflammatory mediators in the CNS of mye-

loid cell-specific Ifnar1�/�mice at the peak of disease (Figure S6).

Among factors tested, CCL2 and TNFa were upregulated in the

CNS of IFNARfl/fl LysMCre animals. We further measured sur-

face marker expression on CNS infiltrating CD11b+ cells. We

found more MHC class II-expressing CD11b+ cells in the CNS

Figure 3. Encephalitogenic T Cells Are More Effective at Inducing

EAE When Transferred into IFNAR-Deficient Hosts

Clinical score over time after adoptive transfer of MOG-reactive T cells into

Ifnar1�/� (filled circles) or Ifnar1+/+ (open squares). Data shown are from one

representative experiment of three individual experiments with at least five

mice per group. Asterisks indicate statistical significance (p < 0.05).
showing either Ly-6Chi or Ly-6Clo expression and CD45hi or

CD45lo, indicating the involvement of several myeloid MHC class

II+ cell types (Figure 6D).

In order to clarify whether engagement of IFNAR on macro-

phages and microglia modulates CNS pathology, we measured

the amount of degraded myelin protein (dMBP) in MAC-3+

macrophages and microglia and found significantly increased

numbers of deposits in the absence of IFNAR (Figure 6E). To

test further whether IFNs can change the uptake of myelin

by macrophages, we challenged isolated macrophages with

IFN-b in vitro (Figure 6F). We found that exogenously added

IFN-b was able to modulate myelin uptake by macrophages. My-

elin uptake was significantly reduced after incubation with IFN-b,

indicating that IFNAR-mediated signaling is a regulator of myelin

phagocytosis on cellular level. Further, exogenously added IFN-

b revealed impaired MHC class II downregulation in IFN-g-stim-

ulated Ifnar1�/�macrophages that was largely dependent on the

presence of Tyk2, a member of the Jak family kinases known to

be crucial for the receptor signal transduction by IFNs (Fig-

ure 6G).

To determine how the lack of IFNAR on myeloid cells shapes

the immune profile of macrophages, we tested the chemokine

pattern in response to the IFN-b inducer LPS alone and in com-

bination with IFN-b (Figure S7). However, when LPS was com-

bined with IFN-b, CXCL1 and CXCL2 production was modulated

in WT but not Ifnar1fl/fl LysMCre macrophages, suggesting that

the absence of IFNAR on myeloid cells can cause an enhanced

chemokine response.

Microglia, the brain-endogenous macrophages, might also

be targeted with LysMCre transgenic mice and could therefore

also contribute to the IFN-mediated suppression of CNS auto-

immunity. Indeed, by performing Southern-blot analysis, we ob-

served a substantial deletion in hematopoietic microglia,

whereas neuroectodermal astrocytes were devoid of homolo-

gous recombination in the presence of the Cre transgene

(Figure 7A). Importantly, further in vivo examinations revealed

that in the absence of IFNAR signaling, CD11b+Ly-6loCD45lo

microglia were a major population within the CNS that ex-

pressed MHC class II molecules during EAE (Figure 7B).

Moreover, Ifnar1fl/fl LysMCre microglia isolated from the CNS

exhibited an altered CXCL2 production capacity in vitro upon

LPS stimulation (Figure 7C), thereby potentially contributing to

the phenotype observed.

Absence of a T Cell-Related Transcription Profile
in Microglia upon IFN-b Challenge
To better understand how type 1 IFNs modulate the macrophage

immune responses in general, we challenged microglia with

IFN-b and investigated the IFN-induced transcriptional profiling.

Cells were treated with IFN-b for 6 and 24 hr, and an Affymetrix

Mouse Genome 430A 2.0 array was performed. The statistical
(left) and infiltration (right). Each symbol indicates mean of one mouse. Data are expressed as mean ± SEM. Significant differences are marked with

asterisks.

(D) Enzyme-linked immunospot analysis of IFN-g, IL-4, and IL-17 production by lymph node and CNS-derived MOG-reactive lymphocytes restimulated

for 48 hr with MOG35–55.

(E) Expression of chemokines at peak of disease (above) and Th1, Th2, and Th17 cell related factors during different disease stages (10, 18, and 30 days after

immunization) (below) in the CNS of Ifnar1�/� (black symbols) or WT (white symbols) mice. Data are expressed as ratio of induced factors versus endogenous

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and expressed as mean ± SEM. Significant differences are marked with asterisks.
Immunity 28, 675–686, May 2008 ª2008 Elsevier Inc. 679
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Figure 4. Brain-Specific IFNAR Expression Is Dispensable for the Autoimmune Process within the CNS

(A) Southern-blot analysis of different tissues from Ifnar1fl/fl NesCre mice. Deletion band (4.1 kb) and WT band (5.0 kb) are shown.

(B) Clinical course of EAE in Ifnar1fl/fl NesCre mice (filled circles) compared to the WT (open squares). One representative experiment out of two is shown.

(C) Histopathology of spinal cords visualized by MAC-3 for macrophages and by CD3 for T cells (left) and quantification thereof (right).

(D–F) CNS pathology in Ifnar1fl/fl NesCre animals. (D) shows distribution (left) and quantity (right) of amyloid precursor protein (APP) deposits representing axonal

damage. (E) shows regions (left) and extent (right) of demyelination (luxol fast blue [LFB]). (F) shows the appearance and number of activated glial fibrillary acidic

protein-positive (GFAP) astrocytes in the spinal cord during disease. Data are expressed as mean ± SEM (n R 5).

Scale bars represent 100 mm in (C)–(F).
procedures allowed the identification of 663 significantly regu-

lated genes that were submitted to a k-means clustering analysis

with R. This objective method allowed the detection of four dif-

ferent groups of gene induction with clusters 1, 2, and 4 that

showed upregulated genes and cluster 3 with downregulated

genes (Figure 7D).

We used the 533 upregulated genes from clusters 1, 2, and 4 for

a functional analysis of overrepresentation of Gene Ontology

terms in thisgenes by theGOstatspackage for R (FalconandGen-

tleman, 2007). The most significant functional group of genes was
680 Immunity 28, 675–686, May 2008 ª2008 Elsevier Inc.
found to lie within immune or host defense response rather than in

the induction of Th1, Th2, or Th17 cell genes. Independent of the

gene clustersdiscussedabove, in Table S4, themostsubstantially

upregulated genes after 6 or 24 hr are shown grouped according

to their biological function. Most importantly, many chemokines,

cytokines, costimulatory, antigen-presentation molecules, and

macrophage-related activation markers were strongly upregu-

lated, whereas no overt upregulation of genes indicative for a Th

cell shift were detectable, suggesting a primary innate immune

response of macrophages upon IFN-b challenge.
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Taken together, our data indicate that engagement of myeloid-

specific IFNAR by endogenously produced IFN-b modulates the

effector but not the priming phase of EAE and leads to aggra-

vated autoimmunity by shaping the innate immune response of

myeloid cells, e.g., cytokine and chemokine production, expres-

sion of surface immune receptors, and myelin phagocytosis.

DISCUSSION

We addressed here the function of the receptor of type I inter-

ferons (IFNAR) in an autoimmune inflammatory mouse model

of MS where disease-associated IFN-b is produced locally in the

CNS. By using gene-targeted mice, we were able to investigate

the role of ubiquitously expressed IFNAR specifically on brain

cells as well as on other cell types that participate in EAE patho-

genesis, including T and B lymphocytes as well as macrophages

and granulocytes. This approach allowed us to identify in vivo

the main cell type targeted by interferon action that essentially

contributes to CNS autoimmunity.

We found that IFN-b is produced locally in the CNS, but not

in the blood, during inflammatory demyelination and that IF-

NAR-dependent genes show disease-associated upregulation.

Although many cell types are capable of producing type 1 inter-

ferons during infection and autoimmunity, the main producers

are thought to be plasmacytoid dendritic cells in the blood (Asse-

lin-Paturel et al., 2001; Ito et al., 2006). However, brain-endoge-

nous cells, e.g., microglia, astrocytes, and neurons, have been

shown to produce IFN-b as well (Delhaye et al., 2006; Town

et al., 2006). It has been described that plasmacytoid DCs, con-

Figure 5. T Cell-Mediated IFNAR Signaling

Is Not Required for the Effector Phase of

EAE Disease

(A) Genomic Southern-blot analysis of several tis-

sues from Ifnar1fl/fl CD4Cre animals.

(B) Disease course in Ifnar1fl/fl CD4Cre (filled cir-

cles) and WT mice (open squares). One represen-

tative experiment out of two is shown. Asterisks

indicate statistical significance.

(C) Quantity of infiltrates at 35 days after immuni-

zation. Sections were stained with MAC-3 for

macrophages and microglia, CD3 for lympho-

cytes, and luxol fast blue (LFB) for myelin. The

scale bar represents 200 mm.

(D and E) Recall responses of Ifnar1fl/fl CD4Cre

(filled circles) and WT (open squares) lymph node

cells to either MOG35–55 peptide or KLH at several

dosages were measured by [H]thymidine-uptake

(D) and IL-17 ELISA (E). Shown are representative

of two independent experiments.

(F) Activation status of CNS-infiltrating T cells dur-

ing autoimmune inflammation of the CNS (gated

on CD4 cells).

ventional DCs, and CD8 alpha+ DCs do

invade during acute relapsing EAE in-

duced by a proteolipid protein peptide

of amino acids 178–191 (Miller et al.,

2007). Nevertheless, the cellular source

of disease associated IFN-b production

within in the CNS remains to be determined in our MOG35–55

EAE model.

In order to test the functional significance of the IFNAR system

in the EAE model, we immunized mice lacking IFNAR from all tis-

sues. Importantly, these mice showed an intensified effector

phase with increased rate of lethality accompanied by aggra-

vated neuropathological changes, consisting of elevated num-

bers of invading macrophages and stronger demyelination. De-

spite higher local production of chemoattractants within the

CNS, the number of infiltrating mononuclear cells in the preclin-

ical phase and the ratio of Th cell cytokines remained un-

changed. Some results are consistent with a previous observa-

tion that mice lacking one ligand of IFNAR, namely IFN-b,

developed a more severe MBP89–101-induced EAE (Teige et al.,

2003), but in contrast to these earlier findings, we could not de-

tect a substantial increase of the Th1 cell cytokine IFN-g within

the CNS of affected mice. Further, our results from the transfer

EAE experiments revealed that antigen-restimulated T cells

from WT mice induced significantly more disease in IFNAR-defi-

cient animals, indicating that IFNAR expression on host-derived

cells is critical for disease induction.

We applied the Cre-LoxP technique to identify the pathogenic

role of neuroectoderm-derived CNS host cells, namely astro-

cytes, oligodendrocytes, and neurons, during EAE. Although it

has been shown that astrocytes and oligodendrocytes have

proinflammatory properties under several conditions (van Loo

et al., 2006), our results strongly indicate that brain-restricted

IFNAR expression does not contribute to the pathogenesis of

EAE. Our data are unexpected because previous reports pointed
Immunity 28, 675–686, May 2008 ª2008 Elsevier Inc. 681
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Figure 6. IFNAR Signaling on Peripheral Myeloid Cells Regulates Effector Phase of Autoimmune Encephalomyelitis by Limiting Cell Activa-

tion

(A) Tissue-restricted deletion of the floxed IFNAR locus is shown by Southern-blot analysis in Ifnar1fl/fl LysMCre mice. MACS-sorted splenic CD11b+ cells were

used as positive control. Deletion band (4.1 kb) and WT band (5.0 kb) are shown.

(B) Disease course in the absence of IFNAR on macrophages and neutrophiles. Statistically significant time points are marked with asterisks (p < 0.05). The results

are representative of five independent experiments.
682 Immunity 28, 675–686, May 2008 ª2008 Elsevier Inc.
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toward a modulating role of IFN-b on astrocytes (Okada et al.,

2005; Teige et al., 2006) and oligodendrocytes (Passaquin

et al., 1989; Mastronardi et al., 2004). Despite the fact that our re-

sults clearly rule out a disease-modulating role for IFNAR on neu-

roectodermal cells during EAE, it is still possible that this IFNAR

expression might be more important in chronic relapsing EAE

models.

EAE is a T cell-mediated disease, and it has been reported that

IFNAR is expressed on lymphocytes, as well (Pogue et al., 2004).

However, in our study, T cell-restricted Ifnar1�/�mice developed

a similar course of EAE with comparable neuropathological

changes. Furthermore, we could not detect any differences in

Figure 7. CNS-Endogenous Microglia Have

a Changed Immune Pattern in the Absence

of IFNAR during EAE

(A) Southern-blot analysis of Ifnar1fl/fl LysMCre mi-

croglia and astrocytes. Deletion band (4.1 kb) and

WT band (5.0 kb) are shown.

(B) FACS of MHC class II molecules on CD11b+Ly-

6CloCD45lo microglia in the CNS of diseased

animals.

(C) CXCL2 production of IFNAR-deficient micro-

glia (Ifnar1fl/fl LysMCre, white bars) and negative

littermates (black bars) upon costimulation with

LPS and IFN-b. Data represent mean ± SEM

(n R 6).

(D) Gene induction pattern of all 663 significantly

regulated genes after IFN-b challenge in microglia

with a k-means cluster analysis to identify specific

cohorts of gene induction. Clusters are defined by

different gene regulation over time. Numbers in-

dicate the quantity of regulated genes within the

respective cluster.

the effector function of T cells because

MOG35–55-specific T lymphocytes pro-

duced equivalent amounts of IFN-g, IL-

17, and IL-4 and proliferated similarly in

the absence of IFNAR. In addition, sur-

face expression of activation markers

CD62L and CD44 of brain infiltrating T

lymphocytes was not influenced by the

absence or presence of IFNAR. Hence,

our findings do not support the idea that

endogenously produced IFN-b acts ben-

eficially on T cells, either through inhibit-

ing T cell proliferation or through skewing

the T cell-cytokine response.

The immune-modulatory function of B cells has been de-

scribed in the context of EAE, and it is feasible that type I IFNs

modulate their regulatory function (Fillatreau et al., 2002). Yet,

our analysis of B cell-restricted Ifnar1�/� mice revealed an unal-

tered course of disease with normal infiltrates and typical demy-

elination, thus disproving a functional role of IFNAR on B cells for

the pathogenesis of EAE. The absence of IFNAR on B cells does

not affected MOG-specific IL-10 production by B cells, showing

again the normal B cell function in IFNAR-deficient mice.

In order to test the hypothesis that IFNAR engagement on my-

eloid cells is crucial in modulating CNS autoimmunity, we took

advantage of the LysM Cre transgenic mouse. Notably, the
(C) Priming of MOG-specific T lymphocytes at different time points of disease in lymph nodes of Ifnar1fl/fl LysMCre (filled circles) or WT (open symbols) mice. cpm

indicates counts per minute. Data represent mean ± SEM.

(D) Characterization of CNS-infiltrating CD11b+ MHC class II+ myeloid cells (left) during peak of disease in Ifnar1�/� mice. These cells exhibited Ly-6Chi and

Ly-6Clo and CD45hi and CD45lo expression patterns.

(E) Accumulation of degraded myelin protein (dMBP, black arrows) in MAC-3+ macrophages (red) in the absence of IFNAR (left) and quantification thereof (right) in

EAE diseased CNS tissue. Significant differences are marked with an asterisk. The scale bar represents 15 mm.

(F) Modulation of myelin uptake by IFN-b. Macrophages ingested fluorescein isothiocyanate (FITC)-labeled myelin (green) in lysosomal compartments (red, left

panel). Myelin uptake in the presence of external IFN-b (black bars) or cytochalasin D (gray bars, right panel) is shown. One experiment out of four is shown.

Significant differences are marked with asterisks. The scale bar represents 5 mm.

(G) Aberrant MHC class II regulation on cultured peritoneal Ifnar1�/� macrophages in the absence of Tyk2. Cells were stimulated with either IFN-b (black lines)

or IFN-g (green lines) alone or combination of both (red lines). Inhibition of IFN-g-induced MHC II production by IFN-b in WT, IFNAR�/�, and Tyk2�/� cells (right).

**: p < 0.01, *: p < 0.05.
Immunity 28, 675–686, May 2008 ª2008 Elsevier Inc. 683
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course of EAE in macrophage- and neutrophil-specific Ifnar1�/�

mice was strongly increased during the effector phase, and

some mice even died because of severe disease. The clinical dif-

ferences to control mice, however, were not always statistically

relevant, as seen in the total Ifnar1�/� situation, most likely due

to the fact that gene deletion in myeloid cells is incomplete (Gri-

vennikov et al., 2005). Which myeloid cell types are crucial in the

IFNAR-mediated change of CNS autoimmunity? Although gran-

ulocytes have been shown to have immunoregulatory capacity

during EAE development (Zehntner et al., 2005), their number

was, in contrast to MAC-3+ mononuclear phagocytes, quite

low and not elevated in the CNS (data not shown). The MAC-3

antigen can be found on tissue macrophages, thioglycollate-eli-

cited peritoneal macrophages, and monocytes (Walker et al.,

1985), suggesting that these cells might shape the immmune re-

sponse within in the CNS. Both CD11b+Ly-6Chi and CD11b+Ly-

6Clo monocytes were found to be targeted by the LysM Cre

transgene, and therefore these cells might task as endogenous

type I interferon-dependent modulators of CNS autoimmunity

from the peripheral site. Importantly, professional antigen-

presenting cells (APCs) such as plasmacytoid DCs or myeloid

DCs were not targeted by the LysM Cre transgene, disproving

a role of IFNAR on these cell subsets during sterile autoimmunity

of the CNS.

Microglia cells are another possible candidate that could

suppress inflammatory demyelination in a type I-interferon-de-

pendent manner. They are the brain-endogenous macrophages

and populate the CNS early during development to form a regu-

larly spaced network of ramified cells (Priller et al., 2001). Micro-

glia become rapidly activated in most pathological conditions of

the CNS. In autoimmune diseases such as multiple sclerosis,

most experimental results point to a detrimental role of microglia;

for example, then can produce neurotoxic molecules, proinflam-

matory cytokines, and chemokines and can present self-anti-

gens (Steinman, 1996). How could type I interferons modulate

microglia-mediated damage in EAE? Nitric oxide (NO) and its ad-

ducts may disrupt CNS tissue integrity (Steinman et al., 2002),

whereas microglia-derived cytokines and chemokines such as

TNF and CXCL2 activate and attract blood-derived leukocytes.

These may in turn interfere with CNS homeostasis (e.g., by dam-

aging myelin) (Steinman et al., 2002; Hanisch, 2002). However,

effects of IFN-b on production of proinflammatory mediators,

such as TNFa, IL-1, or NO, are controversial and seem to be

dependent on the mode and conditions of activation (Jin et al.,

2007). Further, reactivation of myelin-specific T cells within the

CNS upon recognition of local autoantigens is critical to induce

and/or sustain EAE. But it is still debated whether and to what ex-

tent microglia present myelin-associated antigens to autoreac-

tive T cells in vivo (Ford et al., 1995). In vitro, however, it has

been demonstrated that IFN-b exerts its beneficial effects also

by reducing the antigen-presenting capacity of CNS-specific

APCs such as microglia, which in turn inhibits the effector func-

tions of encephalitogenic T cells (Teige et al., 2006). Interestingly,

the lack of IFNAR on CD11b+ myeloid cells did not changed the

Th cell polarization of T cells in our settings, suggesting that other

mechanisms apart from antigen presentation might be vital.

Thus, monocytes and macrophages and their brain-specific

equivalent, the microglia, are the IFNAR-dependent myeloid

cells critical in shaping CNS autoimmunity. IFNAR signaling in
684 Immunity 28, 675–686, May 2008 ª2008 Elsevier Inc.
these cells potentially modulates, for example, their activation

state. We found a clear increase of MHC class II molecules in

the absence of IFNAR, indicating hyperactivation of these cells.

These data are in line with previous reports describing a role of

IFN-b for MHC class II expression on monocytes in vitro (Kato

et al., 1992; Li et al., 1998).

Our data might provide unique insights into disease-limiting

mechanisms of autoimmune inflammation, which might open

new avenues toward more cell-specific IFN-b-based therapies

that probably would reduce the severity of side effects.

EXPERIMENTAL PROCEDURES

Mice

Ifnar1�/� mice (Muller et al., 1994) originally provided by R. M. Zinkernagel

(Zurich, Switzerland) were backcrossed 20 times to C57BL/6. Mice carrying

loxP-flanked IFNAR (Kamphuis et al., 2006) were crossed with transgenic

mice expressing Cre recombinase under the control of the nestin (Tronche

et al., 1999), CD4 (Wolfer et al., 2001), CD19 (Rickert et al., 1997), or LysM

(Clausen et al., 1999) promoter, each backcrossed at least ten times to

C57BL/6. All mice were bred in house under pathogen-free conditions.

Induction of EAE

Female 6- to 10-week-old mice from each group were immunized subcutane-

ously with 200 mg of MOG35–55 peptide emulsified in CFA containing 1 mg of

Mycobacterium tuberculosis (H37RA; Difco Laboratories, Detroit, MI). The

mice received intraperitonal injections with 250 ng pertussis toxin (Sigma-

Aldrich, Deisenhofen, Germany) at the time of immunization and 48 hr later.

Adoptive transfer was performed as described (Becher et al., 2001; Prinz

et al., 2006). All animal experiments have been approved by the ethics review

board for animal studies at the University of Göttingen.

Clinical Evaluation

Mice were scored daily as follows: 0, no detectable signs of EAE; 0.5, distal

limb tail; 1.0, complete limb tail; 1.5, limb tail and hind-limb weakness; 2,

unilateral partial hind-limb paralysis; 2.5, bilateral partial hind-limb paralysis;

3, complete bilateral hind-limb paralysis; 3.5, complete hind-limb paralysis

and unilateral forelimb paralysis; 4, total paralysis of forelimbs and hind limbs;

and 5, death.

Histology

Mice were sacrificed with CO2. Histology was performed as described recently

(Prinz et al., 2006; van Loo et al., 2006). Spinal cords were removed and fixed in

4% buffered fomalin. Then, spinal cords were dissected and embedded in

paraffin before staining with hematoxylin eosin (H&E) or luxol fast blue (LFB)

to assess the degree of demyelination, MAC-3 (BD PharMingen) for macro-

phages and microglia, CD3 for T cells (Serotec, Düsseldorf, Germany), APP

for amyloid precursor protein (Chemicon, Temecula, CA), chloracetate ester-

ase for polymorphonuclear granulocytes (Sigma-Aldrich, Munich Germany),

dMPB for degraded myelin basic protein (Chemicon, Temecula, CA), and

GFAP for astrocytes (Dako, Hamburg, Germany).

RNA

Spinal cord tissue was freshly isolated and RNA isolated with TRI-Reagent

(Sigma) according to the manufacturer’s protocol. RNA (10 mg/lane) was sep-

arated on 1% formaldehyde-agarose gels and blotted to positively charged

nylon membrane. Probes were radioactively labeled with Rediprime (Amer-

sham) and hybridized with Express-Hyb-Solution (Clontech) according to the

manufacturer’s protocol.

Flow Cytometry

The cells were stained with primary antibodies directed against Ly-6C, CD45,

CD44, MAR1-5A3, CD62L, MHC class II, CD11b, CD4, P-STAT-1, and B220

for 30 min at 4�C. The cells were washed and analyzed with a FACSCalibur

(Becton Dickinson). Viable cells were gated by forward and side scatter of

light. Data were acquired with CellQuest software (Becton Dickinson).
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Postacquisition analysis was perfomed with WinMDI 2.8 software (Scripps-

Research Institute).

Recall Responses, B Cell Activation Assay, IFN-b Measurements,

and ELISPOT Analysis

Recall assays were performed as described recently (Prinz et al., 2006). For cy-

tokine analysis, sister cultures were harvested 4 hr after culture supernatants

were analyzed by ELISA for IFN-g and IL-17 (R&D Systems, Bergisch-Glad-

bach, Germany).

Spinal cord homogenates were prepared and diluted 1:5 in lysis buffer as

described by us (Prinz and Hanisch, 1999), and IFN-b levels were measured

by application of an IFN-b ELISA according to the instructions (PBL Biomedical

Laboratories, New Brunswick, NJ). B cell activation was determined as

described recently by Fillatreau (Fillatreau et al., 2002). Enzyme-linked immu-

nospot analysis was performed as reported previously by us (Gutcher et al.,

2006).

Peritoneal Macrophages, Microglia, and Stimulation

Mice were injected with thioglycolate (29 g/l phosphate-buffered saline [PBS])

intraperitoneally (i.p.). Peritoneal cells were collected 96 hr after injection by la-

vage of the peritoneal cavity with 2 ml of ice-cold PBS. Cells were plated in cell-

culture plates and nonadhering cells were removed by washing of the wells

1 hr later. Microglia were prepared as described (Prinz and Hanisch, 1999).

Macrophages and microglia were incubated for 24 hr prior to experiments

and stimulated with LPS (10 ng/ml), IFN-b (10 ng/ml), and TNFa (10 ng/ml)

for 18 hr. Protein levels were detected by ELISA as described by the manufac-

turer (R&D Systems, Bergisch-Gladbach).

Real-Time PCR and Microarray Analysis

RNA was extracted from tissues and flushed with ice-cold HBSS, and RNA

was isolated with RNAeasy Mini kits (QIAGEN, Hilden, Germany) according

to the manufacturer’s instructions. The samples were treated with DNaseI

(Roche, Mannheim, Germany), and 1 mg of RNA was transcribed into comple-

mentary DNA (cDNA) with oligo-dT primers and the SuperScript II RT kit (Invi-

trogen, Carlsbad, CA). cDNA (2.5 ml) was transferred into a 96-well Multiply

PCR-plate (Sarstedt, Germany), and 12.5 ml ABsolute QPCR SYBR Green

master mix (ABgene, Surrey, UK) plus 19.6 ml ddH2O was added. The PCR re-

action was performed as described recently (Prinz et al., 2006; Mildner et al.,

2007).

Total RNA (1 mg) was processed with the MessageAmp II-Biotion Enhanced

Kit (Ambion) and hybridized to the murine array 430 A2.0 according to the

manufacturer’s protocols (Affymetrix). Microarrays were scanned and initially

analyzed with Affymetrix GCOS software. Two biological replicates per condi-

tion (0 hr, 6 hr, and 24 hr IFN-b) were carried out. CEL files were processed for

global normalization, and expression values were generated with the robust

multichip average (rma) algorithm in the R affy package (Bolstad et al.,

2003). So that differential expression could be tested for, the bayesian-ad-

justed t statistics from the linear models for Microarray data (limma) package

with subsequent multiple testing correction based on Benjamini-Hochberg

was used (Hochberg and Benjamini, 1990). Probe sets were considered to

be differentially expressed if there was a minimum n-fold change of 3 between

any of the three conditions and the p value for 6 hr or 24 hr was below 0.01.

SUPPLEMENTAL DATA

Seven figures, four tables, and two movies are available at http://www.

immunity.com/cgi/content/full/28/5/675/DC1/.
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Figure S1. No Overt CD4 T Helper Subset Shift in the Absence of IFNAR 
Quantification of the ELISPOT data shown in Fig. 2D.  Lymph node and CNS-derived MOG-
specific lymphocytes were harvested 7 or 14 days post immunization and IFN-γ, IL-4 and IL-
17-producing spots were assessed quantitatively in a recall assay. Data show mean ± SEM. 
Ifnar1-/- (black bars) and Ifnar1+/+ (white bars) animals are depicted. 
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Figure S2. Cell-Type Specific Deletion of IFNAR in Several Cre Lines 
(A) Flow cytometry using the anti mouse IFNAR antibody MAR1-5A3 indicates cell-type-
specific and highly efficient IFNAR deletion in Ifnar1fl/fl CD4 Cre, Ifnar1fl/fl CD19 Cre and 
Ifnar1fl/fl LysMCre mice. Peripheral blood cells of 10 week old adult mice were stained with 
anti-CD3, anti-B220, anti-CD11b and anti-IFNAR, respectively. WT mice (Ifnar1fl/fl, black 
lines) and Ifnar1-/- mice (red lines) were used as controls. Green lines indicate the respective 
Cre line used. 
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(B) Different degrees of IFNAR deletion on several CD11b+ hematopoietic subsets such as 
CD11c+CD11b-B220+ pDC, CD11c+CD11b+B220- mDC, Ly6Clo resident monocytes (r 
monocytes), Ly-6Chi inflammatory monocytes (i monocytes) and Gr-1+ granulocytes. Ifnar1fl/fl 
LysMCre animals are visulalized with green lines, Ifnar1-/- with red lines and WT mice 
(Ifnar1fl/fl) with black.   
(C) Splenocytes were stimulated with 10 ng/ml IFN-β for 15 min and the percentage of 
phosphorylated STAT1 (P-STAT1) CD11b+ cells was measured by FACS in Ifnar1fl/fl 
LysMCre, Ifnar1-/- and WT animals (Ifnar1fl/fl).   
 
 
 
 
 

 
 
Figure S3. The Absence of IFNAR on B Cells Does Not Influence EAE Course and 
Concommitant CNS Pathology 
(A) Southern blot reveals B-cell-specific IFNAR deletion in Ifnar1fl/fl CD19Cre mice. 
(B) Active EAE in Ifnar1fl/fl CD19Cre mice (filled circles) and Ifnar1fl/fl (open squares) animals. 
One representative experiment out of two is shown.  
(C) Normal histopathology of the CNS in Ifnar1fl/fl CD19Cre mice. The number of 
mononuclear cells infiltrating the spinal cord was assessed. MAC-3 for 
macrophages/microglia, CD3 for T lymphocytes and LFB for demyelination.  
(D) B cells produce MOG-specific IL-10 in Ifnar1-/- (black bars) and Ifnar1+/+ (white bars) 
mice. Medium alone was used as control. Data are given as means ± SEM from one 
representative experiment out of two. 
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Figure S4. Specificity of Myeloid-Specific IFNAR Deletion in Ifnar1fl/fl LysMCre Mice 
Quantification of exon 10 deletion in bone-marrow-derived macrophages (BMDM), 
thioglycollate-elicited peritoneal macrophages (PEC), tail and thymus of Ifnar1fl/fl LysMCre 
(black bars) and Ifnar1fl/fl (white bars) animals by real time-PCR. 
 
 

 
 
Figure S5. Normal Production of Encephalitigenic IL-17 in the Lymphoid Tissues of 
Ifnar1fl/fl LysMCre Mice 
IL-17 production by MOG-specific lymphocytes after indicated time points was measured by 
ELISA. Data are given as means ± SEM and are supplemental to proliferation data depicted 
in Fig. 6C. 
 
 
 

 
 
Figure S6. Cytokine and Chemokine Levels in the CNS of Myeloid-Specific Ifnar1fl/fl 
LysMCre Animals 
Cytokine and chemokine profiles in the CNS of Ifnar1fl/fl LysMCre (black bars) and Ifnar1fl/fl 
(white bars) mice. mRNA was extracted at peak of disease and real-time PCR was 
performed. Data represent mean ± SEM. There are no statistically significant differences. 
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Figure S7. Changed Chemokine Production in the Absence of IFNAR on Macrophages 
WT (Ifnar1fl/fl), Ifnar1fl/fl CD4Cre, Ifnar1fl/fl CD19Cre, Ifnar1fl/fl LysMCre or Ifnar1-/- macrophages 
were exposed to either LPS alone or in combination with IFN-β and production of CXCL2 
(MIP-2) and CXCL1 (GROα, KC) was measured by ELISA and compared to LPS-stimulated 
cells. Data represent mean ± SEM.  
 
 
 
Table S1. The Presence of the Type 1 Interferon Receptor System Modulates 
Pathogenicity of EAE 

 
One representative of four independent experiments is shown. *p<0.05 

 
 
Table S2. Adoptive Transfer of MOG-Reactive Lymphocytes into Ifnar1+/+ and Ifnar1-/- 
Recipients 

 
The table summarizes data shown in Figure 3. a of diseased mice. *p<0.05  

 
Mouse 

genotypes 
 

 
Incidence 

(%) 

 
Lethality 

(%) 

 
Mean day of disease 

onset (± SEM) 

 
Mean maximal clinical score 

(± SEM)  

 
Ifnar1-/- 

 
10/10 (100) 

 
30* 

 
13.4 ± 0.5 

 
3.4 ± 0.1* 

 
Ifnar1+/+ 

 

 
10/10 (100) 

 
0 
 

 
14.1 ± 1.1 

 
2.4 ± 0.3 

 
Mouse 

genotypes 
 

 
Incidence 

(%) 

 
Mean day of  

disease onset  
(± SEM)  a 

 
Mean maximal  
clinical score  

(± SEM) a 

 
Mean accumulative  

score  
(± SEM) a 

 
Ifnar1+/+ 

 
4/6 (67) 

 
31.0 ± 2.8 

 
2.2 ± 0.2 

 
14.2 ± 5.5 

 
Ifnar1-/- 

 

 
5/6 (83) 

 
18.6 ± 2.7* 

 
 3.2 ± 0.3  

 
53.0 ± 14.7* 
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Table S3. Cell-Specific Requirement of the Type Interferon System during Autoimmune 
Encephalomyelitis 

 
The table shows a representative of at least two independent experiments for each 
experimental group. a of diseased mice. *p<0.05 

 
Mouse 

genotypes 
 

 
Incidence 

(%) 

 
Lethality 

(%) 

 
Mean day of disease 

onset (± SEM)  a 

 
Mean maximal clinical 

score (± SEM) a 

 
Ifnar1fl/fl NesCre 

 

 
10/10 
(100) 

 
0 

 
16.5 ± 1.5 

 
2.6 ± 0.1 

 
Ifnar1fl/fl 

 

 
8/9 (89) 

 
0 

 
13.6 ± 0.9 

 
2.5 ± 0.4 

 
Ifnar1fl/fl CD4Cre 

 

 
6/6 (100) 

 
0 

 
13.3 ± 1.2 

 
2.6 ± 0.2 

 
Ifnar1fl/fl 

 

 
6/6 (100) 

 
0 

 
11.7 ± 0.5 

 
2.3 ± 0.2 

 
Ifnar1fl/fl CD19Cre 

 

 
8/8 (100) 

 
0 

 
12.1 ± 0.9 

 
2.9 ± 0.1 

 
Ifnar1fl/fl 

 

 
8/8 (100) 

 
0 

 
14.9 ± 2.3 

 
2.6 ± 0.3 

 
Ifnar1fl/fl LysMCre 

 

 
6/6 (100) 

 
33* 

 
14.8 ± 1.7 

 
3.1 ± 0.1* 

 
Ifnar1fl/fl 

 

 
6/6 (100) 

 
0 

 
12.7 ± 1.2 

 
2.4 ± 0.2 
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 Table S4.  
Gene class Gene symbol fold change after 6 h fold change after 24 h 
IFN regulated genes 
 
GO:0009615 
Response to virus 
p=5*10-10 

IRF7 
Mx1 
STAT2 
STAT1 
Mx2 
IFIH1 
TLR3 
EIF2AK2 

57.6 
174.0 
22.2 
14.8 
20.3 
15.0 
13.7 
7.8 

55.9 
52.1 
12.6 
9.1 
5.9 
7.0 
4.1 
3.9 

Antigen presentation 
 
GO:0019882 
Antigen processing 
And presentation 
p=3*10-8 

PSMB9 
PSMB8 
TAP2 
PSME1 
PSME2 
TAP1 
H2-D1 
TAPBP 

9.7 
5.1 
7.7 
2.8 
3.2 
16.1 
2.3 
4.8 

6.5 
4.2 
3.1 
2.7 
2.2 
9.0 
4.4 
3.9 

Th1 IFNg 
IL12a 
IL12b 
IL12RB2 
STAT4 

1.1 
1.3 
1.2 
1.1 
1.0 

1.1 
1.3 
1.2 
1.2 
1.1 

Th2 IL4 
STAT6 
IL13 

1.1 
1.2 
1.2 

1.1 
1.4 
1.1 

Th17 IL23A 
IL17A 
IL17B 
IL6 
TGFB1 

1.1 
1.2 
1.2 
2.4 
1.1 

1.0 
1.1 
1.0 
1.0  
1.0 

Chemotaxis 
 
GO:0006935 
Chemotaxis 
p=0.00039 

CCL5 
CCL12 
CXCL10 
CCXL11 
CCL2 
CCL7 
CCL4 
CCL3 

65.3 
230.9 
154.8 
95.8 
39.9 
50.8 
4.1 
2.6 

76.4 
40.0 
10.6 
4.5 
4.9 
3.7 
1.7 
1.1 

Other cytokines IL-15 
IL-18BP 
TNFSF10 
IL-18 
TNFa 

11.8 
9.0 
26.8 
4.7 
7.8 

4.1 
8.4 
3.2 
2.7 
1.0 

 
Selected genes in brain macrophages (microglia) after IFN-β (1.000 U/ml for 6h and 24h) 
treatment. IFN stimulated genes with a significant change in expression values between IFN-
β treated and untreated samples (p-value <0.01) are shown in red. Corresponding Gene 
Ontology (GO) categories with the respective p-value are derived from a GO 
overrepresentation analysis for genes in cluster 1, 2 and 4 from Fig. 7D and shown in italics. 
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