

Markus Mever¹, Sebastian Götz¹, Birgit Schneider¹ Jürgen Kempf², Susanne Vogt², Laura M. Huppertz²

¹: Bruker Daltonik GmbH, Bremen, GERMANY ²: Institute of Forensic Medicine, University Medical Center Freiburg, GERMANY

Introduction

Introduction

There is strong demand in both clinical research and forensic toxicology toxicology for automated, robust and sensitive analytical solutions to overcome the well-documented limitations of GC-MS, LC-UV and immunoassay technologies. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with mass spectral library searching is an emerging strategy in this growing field of application. However, until now the adoption and successful implementation of this technology by non-MS experts has presented many difficult challenges. We herein describe the Toxtyper™, LC-lontrap MSⁿ workflow: a robust and accurate Toxtyper™ solution for the rapid detection, identification and reporting of drugs in biological specimens with unprecedented ease of use. After sample extraction (urine or serum), a fast 11 minute-binary UHPLC separation is deployed prior to mass spectrometric analysis by the Toxtyper®. Drug and /or metabolite detection is confirmed by matching the generated MS, MS² and MS³ spectra with retention time to the Toxtyper spectral library containing the corresponding information for 840 compounds of toxicological relevance. Fully automated data processing and evaluation is carried out and reports are directly sent to the user or the responsible toxicologist by email. We show how the Toxtyper™, workflow has been successfully tested by independent laboratories showing excellent inter-laboratory transferability of methods that generate accurate and reproducible results.

Experimental

Sample preparation

demonstrate the interlaboratory transferability and samples and one blank serum sample were sent to five different labs and analysed using seven separate Toxtyper^m LC-MS^n systems. Three mixtures of toxicologically relevant substances were spiked into blank human serum at different concentrations. Additionally, a blank human serum sample was extracted. Sample preparation (LLE) protocol. Serum (1 mL) was spiked with 50 ng of D5-diazepam as an internal standard and then mixed with 0.5 mL borate buffer (pH 9) and 1.5 mL 1-chlorobutane. After a 3 min mixing step, the solution was centrifuged at 4000 \times g for 5 min. The organic phase was separated, aliquoted, and evaporated at 40°C with $N_2.$ These aliquots were forwarded to the 5 participating labs, where the residues were redissolved in 25 μL eluent A/B (50:50; v/v;)

LC Conditions					
LC system	Thermo Dionex Ultimate3000 RSLC				
Eluent A	H2O, 0.1% formic acid, 2 mM ammonium formiate, 1% acetonitrile				
Eluent B	Acetonitrile, 0.1% formic acid, 2 mM ammonium formiate, 1% H ₂ O				
Analytical column	Acclaim [®] RSLC 120 C18 2.2 μm, 120A, 2.1 x 100 mm				
Flow rate	ate 500 μl/min				
Gradient:	0.0 to 1.0 min: 1% B				
	1.0 to 8.0 min: 1% B to 95% B, linear				
	8.0 to 9.0 min: 95% B				
	9.0 to 9.06 min: 95% B to 1% B, linear				
	9.05 to 11 min: 1% B				
MS Conditions					
Mass Spectrometer	Toxtyper™ AmaZon Speed MS ⁿ system				
Scan mode	UltraScan 32.500 m/z sec-1				
Scan range	70 - 800 m/z				
Source	Electrospray ionisation (ESI)				
Polarity	Zero Delay Alternating +/- polarity switching				
MS ⁿ Acquisition	Data dependent MS ² and MS ³ with Scheduled Precursor List of 830 cpds				
	Active exclusion after 1 spectrum, reconsider if intensity increase by factor 5				

The toxicological compounds of interest in this interlaboratory study were chosen without consideration to their retention times or molecular masses and were spiked into blank human serum at different concentrations as detailed in Table 1

Sample 1	Sample 2	Sample 3		
Methadone (250)	Trimipramine (100)	Duloxetine (600)		
EDDP (50)	Amitryptiline (100)	Nordoxepin (300)		
Diazepam (100)	Zolpidem (500)	Mirtazapine (50)		
Nordazepam (500)	Midazolam (150)	Metoprolol (200)		
Oxazepam (200)	a-OH-midazolam (50)			
Temazepam (100)	Fentanyl (3)			
	Lidocaine (200)			
	is spiked in human bla ferability of the identifi			

I C-MSⁿ conditions

Two microliters of the re-constituted sample was injected onto an Ultimate3000 RSLC system using seven different amaZon speed ion trap systems. Each system was used for the generation of MS and MSn spectra with continuous polarity switching. Data was acquired using a data-dependent scheduled precursor list (i.e. an inclusion list for 830 target compounds).

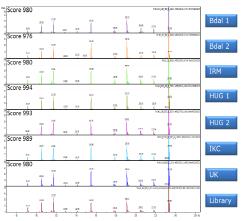
Data Acquisition and Spectral Library Searching

The Toxtyper™ MSⁿ spectral library was developed in close collaboration with the Forensic Institute in Freiburg (University Medical Center, Germany²) and included spectral information and retention time data for 830 compounds of forensic and clinical research importance.

All samples in the interlaboratory test were processed using Data Analysis 4.1 in a completely automated manner using Compass OpenAccess. Compass OpenAccess is a 'walk up and go' graphical user interface that allows complete novice users to execute the Toxtyper workflow in a routing environment (see fig2). After completion of a run, the user received a PDF report of the LC-MSⁿ results; either by logging onto the web based COA system or by email to a Smartphone. The automatically generated reports from the different labs were evaluated to demonstrate transferability of the Toxtyper solution and compare the overall performance of the different LC-MS ion trap systems. If a substance was not identified, the respective raw data file was inspected manually to find the cause.

Results and Discussion

Compass OpenAccess:


All compounds spiked into sample 1 could be identified by all participating labs wit han analysis time of approximately minutes per sample. Several substances, for example. diazepam, and temazepam in sample 1, were present at low concentrations, demonstrating the high sensitivity of the procedure. The results are summarized in Table 2.

Spiked Compounds	s Participants						
Sample 1	IKC	IRM		HUG 2	UK	BDal 1	BDal 2
Methadone	1	1	1	1	1	×	~
EDDP	1	1	× .	1	1	1	×
Diazepam	1	×	×	×	1	× .	× .
Nordazepam	1	1	1	1	1	× .	× .
Oxazepam	1	1	1	1	1	1	×
Temazepam	1	1	×	×	1	×	×
Sample 2	IKC	IRM	HUG 1	HUG 2	UK	BDai 1	BDal 2
Amitriptyline	1	×	×	1	×	1	-
α-OH-midazolam	1	× .	1	1	~	× .	1
Fentanyl	1	1	1	1	1	1	× .
Lidocalne	× .	× .	× .	×	× .	× .	× .
Midazolam	1	× .	~	1	~	× .	× .
Trimipramine	1	1	1	×	\odot	~	1
Zolpidem	1	1	× .	1	~	~	1
D5-diazepam (IS)	1	× .	×	1	× .	× .	× .
Ingredient of Serum							
Caffeine	×	× .	× .	1	× .	× .	× .
Theobromine	-	1	-	1	-	-	1
Sample 3	IKC	IRM	HUG 1	HUG 2	UK	BDal 1	BDal 2
Duloxetin	1	× .	×	1	1	× .	1
Metoprolol	1	1	\odot	\odot	1	1	1
Mirtazepine	1	1	7	7	1	1	1
Nordoxepine	1	× .	×	× .	× .	× .	× .
D5-dlazepam (IS)	1	×	×	1	1	× .	×
ingredient of Serum							
Caffeine	1	1	1	1	1	× .	1
Theobromine		1			-		

Table 2: Results from the interlaboratory test

Trimipramine was not identified by one lab due to extensive coelution of matrix giving a mixed MS² spectrum yielding a low spectra purity score value below the cutoff for reporting. Metoprolol from sample 3 was not identified by two systems at HUG1 and HUG2. This was due to coelution with mirtazapine, which led to a mixed MS² spectrum and subsequently to a score value below the cut-off for ID reporting.

It should be noted that metoprolol and mirtazapine not only have very similar retention times, but also differ only slightly in mass (2 Common false positives were identified in the blank serum sample and the other samples, but these could be easily excluded after manual inspection of the reports and the respective raw data files. For example, a common false positive was benzododecinium. This compound is used as skin disinfectant during blood withdrawal and is present in the sample as a contaminant. Figure 4 shows the MS² spectra of amitriptyline recorded from spiked serum extracts of all participants and the respective library spectrum. SmartFrag technology provides reproducible fragmentation results that lead to the highest level of lab-to-lab transferability and reproducibility.

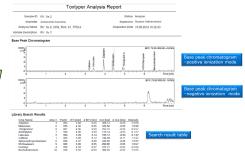


Fig 4. Example of automatic Toxtyper ™report produced from Co

Conclusion

The Toxtyper™ workflow is a fast and robust tool for the identification and confirmation of xenobiotics in clinical research and forensic toxicology. The combination of MSⁿ spectral information with retention time meets common criteria for identification of analytes. The results of the interlaboratory test demonstrated the efficiency and transferability of the complete workflow over seven independent systems within different laboratories. The unrivalled degree of automation offered by Compass OpenAccess from sample submission, through to data analysis and reporting, makes the Toxtyper™ ideal for use in environments, where a high the foxtyper[™] ideal for use in environments, where a high degree of operator skill may not always be available. The turnkey deployment of the workflow coupled with high detection rates from all laboratories demonstrates the superior performance of the Toxtyper[™] over immunoassay, GC/MS and LC-triple quad systems for toxicological drug identification

The use of additional commercial libraries to extend the scope of this technology towards "General Screening" workflows is currently being investigated. "General Unknown