Cannabinoid findings in children hair - what do they really tell us?

B. Moosmann1, N. Roth1, M. Hastedt2, A. Jacobsen-Bauer1, F. Pragst1 and V. Auwärter1
1Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University Freiburg, Germany
2Institute of Legal Medicine, Charité-University Medicine Berlin, Berlin, Germany
3State Office of Criminal Investigation Baden-Württemberg, Stuttgart, Germany

Introduction

Hair analysis for drugs and drugs of abuse is increasingly applied in child protection cases. To determine the potential risk to a child living in a household where drugs are consumed, not only can the hair of the parents be analyzed but also the hair of the child. In the case of hair analysis for cannabinoids, the differentiation between external contamination and systemic uptake is particularly difficult since the drug is quite often handled extensively prior to consumption (e.g. when preparing a joint) and smoke causes a further risk for an external contamination. Previous studies have shown that Δ9-tetrahydrocannabinolic acid A (THCA-A) detected in hair samples originate predominately from direct transfer through contaminated fingers and/or surfaces [1] and that at least parts of Δ9-tetrahydrocannabinol (THC) originate from side-stream smoke and/or handling of the drug material [1, 2]. As THCA-A, is not incorporated into the hair matrix through the bloodstream in relevant amounts it may act as a marker for external contamination [3]. The aim of the presented study was to evaluate based on the presence of THCA-A, if the positive cannabinoid results found in children hair in a child protection project are caused by external contamination.

Materials and methods

Head hair samples of 41 children (age: 7 months - 12 years), 4 teenagers (age: 7 - 13 years) and 35 drug consuming caregivers (age: 18 - 59 years) were analyzed for THCA-A and THC applying methanolic extraction and a fully validated LC-MS/MS method (Method 1) [4] as well as for THC applying alkaline hydrolysis and a HS-SPME-GC-MS method (Method 2) [5]. Furthermore, 30 hair samples were also analyzed for THCA-A and THC applying alkaline hydrolysis and a GC-MS method (Method 3) [3].

Cannabinoid concentrations in children and adult hair

- THCA-A could be detected in all but one sample
- In 77 out of the 78 THCA-A positive cases the THCA-A concentration was higher than the THC concentration (Median: THCA-A : THC ratio 4.2)
- In 14 cases no THC could be detected despite THCA-A (median 63 pg/mg THCA-A)
- Trend: Higher concentrations in younger children (< 7 years)

Results and discussion

Significant higher THCA-A : THC ratios in hair of children in comparison to their adult caregivers when comparing within families (α = 0.042) (limited number due to data protection reasons)

Comparison within families

<table>
<thead>
<tr>
<th>Sample of one family</th>
<th>Age</th>
<th>THCA-A</th>
<th>THC</th>
<th>THCA-A : THC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>650</td>
<td>38</td>
<td>17.1</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>73</td>
<td>0</td>
<td>>7.3*</td>
</tr>
<tr>
<td>3</td>
<td>34</td>
<td>613</td>
<td>103</td>
<td>3.8</td>
</tr>
</tbody>
</table>

* Estimated using the LOD for THC (10 pg/mg)

Possible explanation:

- Children hair: Domiciliary external contamination through contaminated fingers/surfaces.
- Adult hair: Combination of external contamination through contaminated fingers and through side-stream smoke elevating the THC concentration.

Impact of the applied methodology

Hair analysis for cannabinoids is further complicated by the fact that quite often alkaline hydrolysis is used as the method of sample preparation, leading to decarboxylation of THCA-A and therefore artificially elevating the THC concentration.

The mean and the median of the concentrations of THC (Method 2) and of calculated THCA-A (Method 1) are in relatively good agreement. However, focusing on paired values measured in the samples of the same individual agrees the variation with the concentration ratio Method 1: Method 2 ranging from 0.11 to 6.21.

Consequence of applying different methods

Example from an authentic sample:

Methanolic, LC-MS/MS (Method 1): THCA-A: 130 pg/mg & THC: n.d. (< LOD)

ThC: 65 pg/mg

Method 3

NaOH, LLE, GC-MS (Method 3): THC-A: 46 pg/mg & THC: 65 pg/mg

Recommended cut-off for THC: 20 pg/mg (German driving license re-granting guidelines), 50 pg/mg (Society of Hair Testing)

Conclusion

The results show that the major part of the cannabinoids detected in the hair samples from children arose from an external contamination through ‘passive’ transfer by e.g. contaminated hands or surfaces and not from inhalation or deposition of sidestream smoke. Regarding the interpretation of hair samples in particular from young children, it can be clearly evaluated if positive THC findings result from a smoke exposure or solely from external contamination without smoke exposure. The higher THCA-A : THC ratio in hair of children in comparison to their adult caregivers with families indicates dominating incorporation from contaminated hands and surfaces. Furthermore, it could be shown that the analytical results of hair analysis for cannabinoids strongly depend on the applied methodology mainly because of artefactual decarboxylation of THCA-A which leads to elevated THC concentrations. Therefore, it has to be questioned whether analyzing hair samples for THC using alkaline hydrolysis is adequate in hair analysis for cannabinoids.

[1] Moosmann et. al. Hair analysis for THC-A, THC and CB1 after handling of cannabinoid plant material. 51. DART meeting Funchal, Madeira 2013
[6] The authors would like to thank the German Academic Exchange Service (DAAD) for covering the travel expenses to the 52nd annual meeting of the TIAFT in Buenos Aires, Argentina.
[7] The project was funded by the Deutsche Forschungsgemeinschaft (DFG-AU: 324/3-1).