Drowning due to an intoxication involving the designer drug methoxphenidine – a case report

Christina Grumann, Susanne Vogt, Laura M. Huppertz, Björn Moosmann, Florian Franz, Verena Angerer, Lena Kramer and Volker Auwärter
Institute of Forensic Medicine, Forensic Toxicology, Medical Center – University of Freiburg, Germany

Introduction

Methoxphenidine (MXP), the 2-methoxy derivative of diphenidine, is a dissociative anesthetic drug of the diarylethylamine type. MXP acts, like the classic dissociatives PCP and ketamine, as an NMDA receptor antagonist. The substance was first encountered in the European Union in 2013 being marketed as an alternative to dissociatives like 4-MeO-PCP or methoxetamine. MXP synthesis is known in the scientific literature since the late 1980’s. [1][2]

Case report

We report the case of a 21 year-old man, tested positive for methoxphenidine, found dead in a bathtub with his head and torso completely under water. The deceased was known as a frequent drug and alcohol consumer in the past, but allegedly stopped drug use a few years ago. Due to a history of deliberate self-injury he was treated with psychotropic drugs. Drug blisters containing sertraline, mirtazapine and carbamazepine tablets were found in his room. During autopsy urine and femoral blood were obtained for post mortem toxicology.

Materials and methods

1. Screening for designer stimulants:

 - 1 mL serum/urine
 - + 2 mL phosphate buffer (pH 6) + 10 µL internal standard
 - Solid phase extraction (mixed mode)
 - Evaporation of organic phase (N\(_2\), 40 °C)
 - Reconstitution in 100 µL solvent A10/B (99/1) (v/v)

2. Screening for benzodiazepines:

 - 0.1 mL serum/urine
 - + 0.9 mL borate buffer (pH 9) + 25 µL internal standard
 - Liquid-liquid extraction (chloroform)
 - Evaporation of organic phase (N\(_2\), 40 °C)
 - Reconstitution in 100 µL solvent A1/B (80/20) (v/v)

3. Screening for other drugs and organic poisons:

 GC-MS, LC-MS/MS (synthetic cannabinoids and medical psychotropic drugs), LC-MS\(^{\circledR}\) (Toxtyper\(^{\text{TM}}\)), LC-QToF-MS (Toxscreener\(^{\text{TM}}\))

Sample preparation was done according to accredited standard procedures

Results and discussion

In femoral blood lorazepam was found at a concentration of 5.7 ng/mL and delorazepam at a concentration of 54 ng/mL, as well as 64 ng/mL amphetamine, 2.1 ng/mL 4-fluoroamphetamine (4-FA), and 190 ng/mL methoxphenidine. These results were qualitatively confirmed by the results of the urine analysis (additional finding: lormetazepam). A screening for sertraline, mirtazapine and carbamazepine (due to the drug blisters found on site) and other drugs or organic poisons were negative. Blood alcohol concentration was determined to be 0.93 ‰. Autopsy findings revealed a puncture site at the crook of the left arm, compatible with i.v. drug administration, as well as superficial cuts crossing the inner side of both wrists and typical signs of drowning. Considering the circumstances of this case suicide cannot be excluded, however, an accidental death due to loss of consciousness after use of MXP with subsequent drowning seems more plausible.

Conclusions

This case represents a mixed intoxication including relevant concentrations of the designer stimulant methoxphenidine and ethanol. Methoxphenidine, 4-FA and dyclazepam (the typical metabolites lorazepam, delorazepam, and lormetazepam) [3] were detected in the urine) are substances available from online vendors of ‘legal high’ products. The presented case illustrates that it is important to include new psychoactive substances in post-mortem toxicology screening, even those from drug classes with relatively low prevalence of use like dissociative anesthetics.

References

Acknowledgement

This publication has been produced with the financial support of the ‘Prevention of and Fight against Crime’ program of the European Commission. (JUST/2013/ISEC/DRUGS/AG/6421)

Contact

Christina Grumann
Medical Center – University of Freiburg
Institute of Forensic Medicine
Forensic Toxicology
Albertstr. 9, 79104 Freiburg, Germany
christina.grumann@uniklinik-freiburg.de