Rapid update of screening methods for the detection of synthetic cannabinoid use in human urine by software assisted metabolite identification

Bjoern Moosmann¹, Laura M. Huppertz¹, Florian Franz¹, Sebastian Götz², Dorith Claes², and Volker Auwärter¹ ¹Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Germany ²Bruker Daltonic GmbH, Bremen, Germany

Workflow Overview **1.** Pooled human liver microsomes (pHLM) incubation • LC-Q-ToF-MS screening for metabolites of synthetic cannabinoids in urine samples • Rapid workflow for updating the screening method Introduction Cannabinoid receptor agonists, commonly referred : to as synthetic cannabinoids (SC), are one of the most predominant classes within the group of new : psychoactive substances (NPS) and pose a great : [2a.] Metabolism prediction challenge to the forensic field. Over the last seven years, synthetic cannabinoids offered for purchase Manual: Accurate masses of potential phase I metabolites. have undergone significant structural changes making Anticipated phase I biotransformations: Mono- and immunochemical testing unsuitable. Consequently, dihydroxylation, carboxylation, ester hydroylsis, amide mass spectrometric methods are the gold standard hydrolysis, dihydrodiol formation, reduction as well but have to be adapted frequently to include newly as combinations of these reactions, following known metabolism patterns of related synthetic cannabinoids. emerged compounds. Offering a non-invasive sample collection with a relatively wide window of detection, urine analysis is usually the method of Automatic: choice for abstinence control. However, for urine Generation of precursor analysis metabolite identification of the respective mass lists via e.g. SC is inevitable since most of these compounds are MetabolitePredict metabolized extensively prior to renal excretion. After software. conjugate cleavage with β -glucuronidase, the main phase I metabolites are suitable target analytes. Consequently, the metabolism of new SC needs to be known prior to updating analytical methods. In cases where no authentic human sample material : Generation of with confirmed uptake of the particular compound preferred mass list: is available, pooled human liver microsomes (pHLM) : offer an inexpensive and fast alternative to gain : 🕽 Mode 🐉 Source 🕂 Tune 🌮 MS/MS 🎿 Chromatogram Preferred Mass List 391.13-391.33 preliminary data on phase I metabolites that may : Mass Range 387.14-387.34 386.14-386.34 be relevant for analysis of human urine samples. 385.07-385.27 384.08-384.28 383.05-383.25 382.10-382.30 Active Exclusion -Strict Active Exclusion • Furthermore, the pHLM extracts can be used for : liquid chromatography mass spectrometry method : development. LC-Q-ToF-analysis **ZD**.

For proof of concept of the presented workflow the highly potent synthetic cannabinoid MDMB-CHMICA *N*-{[1-(cyclohexylmethyl)-1*H*-indol-3-yl] (methyl carbonyl}-3-methylvalinate) was chosen as a model compound, being one of the most prevalent SC in Germany and the cause for numerous intoxications worldwide.

UltiMate 3000RS HPLC Column: Kinetex C₁₈ 2.1x100 mm, 2.6 μm Eluents: A: 1% ACN + 0.1% HCOOH + 2 mM $NH_{4}^{+}COO^{-}$ B: ACN + 0.1% HCOOH + 2 mM $NH_{4}^{+}COO^{-1}$ Gradient elution: 20 min total runtime Total flow: 0.5 mL/min 40 °C Oven: Injection vol.: 2 μL

least two fragment masses each.

8.							R	ер	ort	ing
Datab Garage	D			BR	UKER					
	ng Results 160502 : 01116-01 A_RB8_01 2016-05-03 09:04 MDMB-CHMICA-HLM Defau"	I_1932 Sampl	le Type Sample Calib. Date 2016-05-	02 15:21	\sim					Rej
Instrument Data Path	impac D:\Dar Batch Scree	ning Results 1605	02 SynCan MDM	B-CHMICA		BR	UKER			
Screening Result AnalyteName MDMB-CHMICA	MnalyteName m/z t 415.2 MDMB-CHMIC		z .5Batch Screenin	ig Results 1	160502 Syn	Can MDMB	-CHMICA		BRUKEF	, IAS
+O2-H2	R1 ti Esterhydrolysis 17. H2 m/z t	s - RT theo. m/z 18.10 • m/z theo. Δ m/	AnalyteName	m/z theo.	∆m/z [ppm]		mSigma	mand. lons **	Chromatogram	list
MDMB-CHMICA Amide hydrolysis	258.1 RT ti MDMB-CHMIC Hydroxylation I 16.		BLE MDMB-CHMICA Esterhydrolysis + O B	387.2278 RT theo. 13.10	-1.766 m/z Score	0.02 RT Score	3 σ Score	0/0 Ions Score	127 128 13.1 13.3 m	rat
MDMB-CHMICA Dihydroxylation (+O2) A	m/z t 417.2 RT ti MDMB-CHMIC Hydroxylation (9.3		2.5 MDMB-CHMICA S Esterhydrolysis + O-H2 A	m/z theo. 385.2122 RT theo. 8.90	∆ m/z [ppm] -1.031 m/z Score	A RT [min] 0.11 RT Score	mSigma 17 σ Score	Mand. lons		
MDMB-CHMICA Dihydroxylation	m/z t 417.2 RT tl MDMB-CHMIC Hydroxylation I	m/z theo. Δ m/z 401.2435 -1	MDMB-CHMICA S Esterhydrolysis +	m/z theo. 385.2122 RT theo.	∆ m/z [ppm] -1.797 m/z Score	Δ RT [min] -0.19 RT Score	mSigma 684 σ Score	mand. lons 0/0 lons Score		ret
(+O2) C MDMB-CHMICA	10. m/z t 371.2	16.70 m/z theo. Δ m/	0-H2 D	11.40 m/z theo. 385.2122	●●● △ m/z [ppm] -1.705	●	• mSigma 72	mand. lons		val
Esterhydrolysis	RT ti MDMB-CHMIC Hydroxylation (18. m/z t	G RT theo. m/z	C-H2 D	RT theo. 11.40 m/z theo.	m/z Score	RT Score	σ Score • mSigma	Ions Score mand. Ions		•
MDMB-CHMICA Esterhydrolysis + O A	387.2 RT ti MDMB-CHMIC Hydroxylation I 10.	A 401.2435 -3	MDMB-CHMICA Esterhydrolysis + O-H2 E	385.2122 RT theo. 12.40	-1.660 m/z Score	-0.03 RT Score	13 σ Score	0/0 Ions Score		qua
			MDMB-CHMICA Esterhydrolysis + O2 A	m/z theo. 403.2227 RT theo.	∆ m/z [ppm] -0.678 m/z Score	A RT [min] -0.03 RT Score	mSigma 9 σ Score	mand. lons 0/0 lons Score		<u> </u>
Bruker			MDMB-CHMICA	9.20 m/z theo. 403.2227	●●● △ m/z [ppm] 0.275	●●● △ RT [min] -0.05	••• mSigma 16	mand. lons		
			Esterhydrolysis + O2 B	RT theo. 8.30 m/z theo.	m/z Score ●●● ∆ m/z [ppm]	RT Score	σ Score •• mSigma	-		
	Bruker		MDMB-CHMICA Esterhydrolysis + O2 C	403.2227 RT theo. 5.80	0.038 m/z Score	-0.03 RT Score	10 σ Score	0/0 Ions Score	0-144 0-150 0-10000000000	
			Bruker			May 9	, 2016		20 / 27	_
			E	ur	th	er	' SI	cre	en	ing
9.										
							aι	ith	ien	tic s
			A	2	£					
					So a					
			-	2	ם`					
			1	ſ						
		- 1								~
		- 1								Y
		- 1							K	
		t			J				<u>{</u>	
								$\mathbf{\vee}$		
T 1			• ••	-1			, ·			
Ine	e io	aent	пе	d	þ	DSI	T۱	/e	uri	ne

sample is screened after conjugate cleavage in analogy to the pHLM sample to identify the predominant *in vivo* phase I metabolites and to screen for additional metabolites.

Additionally, the sample is screened after protein precipitation for phase II metabolites to allow an update of methods omitting conjugate cleavage in the sample preparation step.

ports are generated by SQ software for each sample ting every hit. The hits are ed based on their mass and tention time error, mSigma ue and the presence of alifier ions (MRSQ-Score).

of the positive

10

Institute of Forensic Medicine Forensic Toxicology

cont'd

Despite varying relative abundances of the detected metabolites, the in vitro and in vivo data showed good agreement with respect to the chosen MDMB-CHMICA metabolites.

Final TASQ method

Based on the additional in vivo metabolism data, the TASQ method could be updated allowing for an identification of phase I and phase II metabolites of MDMB-CHMICA.

Conclusion

Using MassMetaSite software and the described workflow proved to be a suitable, less laborious and time consuming procedure compared to manual data evaluation. The here described approach can be helpful for updating screening methods with metabolite information. This is necessary whenever dealing with analytes that are extensively metabolized such as SC. In other cases identification of metabolites along with the parent compound can serve as a plausibility check and may help in estimating the time of the last drug uptake.