Phase I metabolism of the carbazole derivatives EG-018 and MDMB-CHMCZCA – A new class of synthetic cannabinoids circumventing the 'NpSG'

Lukas Mogler, Florian Franz, Verena Angerer, Bjoern Moosmann and Volker Auwärter Institute of Forensic Medicine, Forensic Toxicology, Medical Center – University of Freiburg, Germany

Institute of Forensic Medicine Forensic Toxicology

Current legal status

The German 'Act to control the distribution of new psychoactive substances' (NpSG) became effective on 26th of November 2016. According to the law, synthetic cannabinoids with indole, indazole or benzimidazole core structures are controlled.^[1] EG-018, EG-2201 (5-fluoro-pentyl analog of EG-018) and MDMB-CHMCZCA are

Results for EG-018

In total, 25 metabolites were generated in pHLM samples incubated with EG-018. Comparing the microsomal metabolic profiles of EG-018 and EG-2201, one identical metabolite (M*01) was detected, formed by mono-hydroxylation hydrolytic and defluorination, respectively.

Results for MDMB-CHMCZCA

For MDMB-CHMCZCA, 29 metabolites were identified in the human urine samples and confirmed *in vitro* by corresponding signals in the pHLM assays. The ten most abundant metabolites were referred to five different metabolization steps and evaluated as reliable urinary biomarkers.

Aims of the study

Phase I metabolism studies were conducted to identify biomarkers for the detection of EG-018 and MDMB-CHMCZCA metabolites in urine samples. Reference spectra of *in vitro* phase I metabolites generated by pooled human liver microsome assays were used as a positive control as reference standards of metabolites were not commercially available.

Extracted ion chromatograms in positive MRM-Mode at m/z**Fig. 2**: 408 \rightarrow 155 (mono-hydroxylation) of pHLM samples of EG-018 and EG-2201.

From a total of 13 *in vivo* phase I metabolites of EG-018, detected in the urine samples, the ten most abundant metabolites were referred to four different biotransformation steps and confirmed by corresponding signals in the pHLM assay. M*04 a product of N-Desalkylation and hydroxylation was the most abundant in vivo metabolite. M*01, the 5-OHpentyl metabolite, was also detectable in each urine sample but with a higher variation of its relative intensity than M04 among the investigated collective.

Extracted ion chromatograms in MRM-Mode at m/z 451 \rightarrow 306 Fig. 5: (mono-hydroxylation in red) and m/z 437 \rightarrow 306 (monohydroxylation + ester hydrolysis in blue) of a urine sample compared to a pHLM sample.

M14, formed by terminal ester hydrolysis and mono-hydroxylation of the cyclohexyl methyl moiety, was the most abundant metabolite among the MDMB-CHMCZCA positive urine samples. M07, mono-hydroxylated but with an intact methyl ester function, can be used to differentiate between the uptake of other chemically similar *tert*-leucine derivatives.

Sample preparation

In vitro microsomal phase I metabolism

- Pooled human liver microsomes^[2]
- Incubation 1 h at 37 °C with parent substance
- Extraction with ACN

In vivo phase I metabolism

urine samples from forensic casework: EG-018 (n=8), MDMB-CHMCZCA (n=15)

- Incubation with β -glucuronidase (1 h, 45 °C)
- Extraction with ACN / 10 M NH₄+HCOO⁻

Analytical workflow

In vitro

Identification of main metabolites

Instrumentation: LC-MS/MS QTRAP[®] 5500 (Sciex) Enhanced product ion scan (EPI)

Postulated main phase I metabolic pathways of EG-018 in vivo. Fig. 3:

Fig. 4: Ranking of 10 detected *in vivo* phase I metabolites of EG-018 according to their relative abundance in 8 authentic urine samples. Error bars show the lowest and highest relative abundances within the investigated collective.

Conclusions

M*04, M*01 are suggested as suitable urinary targets to prove EG-018

consumption in urine. For MDMB-CHMCZCA, the metabolites M14 and M07 are characteristic metabolites for urine analysis. Current online monitoring of 'legal high' products (see poster 32) indicates that carbazole derivatives, mainly MDMB-CHMCZCA, are sold via the Internet as legal alternatives to the recently banned SCs scheduled under the 'NpSG'. Therefore, we recommend to update LC-MS/MS screening methods with the respective metabolites.

Fig. 8: Chemical structures of suggested urinary biomarkers, M*04 and M*01 (EG-018), M14 and M07 (MDMB-CHMCZCA).

Acknowledgement

This publication has been produced with the financial support of the 'Prevention of and Fight against Crime' programme of the European Commission(JUST/2013/ISEC/DRUGS/AG/6421) and the Deutsche Forschungsgemeinschaft (GZ: INST 380/92-1 FUGG).

Literature

[1] Neue-psychoaktive-Stoffe-Gesetz (NpSG), Gesetz zur Bekämpfung der Verbreitung neuer psychoaktiver Stoffe.

[2] Mammalian Liver Microsomes, Guidelines for Use TF000017 Rev 1.0 (BD Biosciences)

Contact Lukas Mogler Medical Center – University of Freiburg Institute of Forensic Medicine Starty Albertstraße 9 79104 Freiburg, Germany Poster download lukas.mogler@uniklinik-freiburg.de