Forensic abstinence control with KIMS immunoassays for drugs of abuse and ethyl glucuronide in urine on a cobas c 501 analyzer

Merja A. Neukamm¹, Arsham Bahrami¹, Volker Auwärter¹, Felix M. P. Mehne² and Eva Höss²

 1 Institute of Forensic Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg ²Roche Diagnostics GmbH, Penzberg

Institute of Forensic Medicine Forensic Toxicology

Introduction

For the medico-psychological assessment (MPA) during driving license re-granting in Germany, abstinence control including urine samples is required. In these programs, even small amounts of markers for drug or alcohol abuse have to be detected. Thus, the concentrations of the target compounds are very low, and, in consequence, the sensitivity of the applied screening method has to be much higher than for clinical use. Modified drugs of abuse and ethyl glucuronide immunoassays were evaluated for precision, accuracy, onboard calibration stability, cross reactivity, sensitivity and specificity.

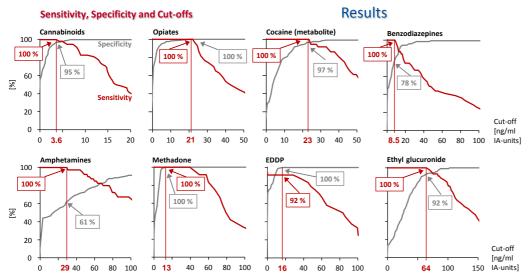
Experimental Kinetic interaction of microparticles in solution (KIMS) Inhibition of aggregation Light scattering Drug-dextrai conjugate Antibody-coated

IA reagents, target analytes and MPA limits (ng/ml urine)

Cannabinoids (THC2) THC-COOH 10 (after hydrolysis)

Opiates (OPI2) morphine (codeine, dihydrocodeine) 25 (after hydrolysis)

Cocaine (COC2) benzoylecgonine 30


Amphetamines (AMPS2) amphetamine, methamphetamine, MDMA,

MDEA. MDA 50

Methadone (MDN2, MM (EMIT-Assay)) EDDP 50

Benzodiazepines (BNZ2) diazepam, nordazepam, oxazepam, hydroxyalprazolam, hydroxybromazepam, 7-aminoflunitrazepam, lorazepam 50

Ethyl glucuronide (ETG (DRI-Assay)) 100

For sensitivity and specificity, the immunoassay values of at least 100 negative and 50 positive samples per substance class* were compared with the quantitative LC-MS/MS or GC-MS values using ROC (receiver operating characteristic) analysis. At least 10 positive samples for each of the MPA-target analytes were included. one: 22, EDDP: 28 positive samples. For the sensitivity the result of the confirmatory analysis was regarded as positive if the measured concentration reached or exceeded a concentration of 60% of the respective MPA limit (supposed measurement uncertainty 40%).

	Quality controls			Precision			Accuracy		
	Target Concentration								
	[ng/ml]			Inter-day (RSD, %)			Inter-day (bias, %)		
	Low	Middle	High	Low	Middle	High	Low	Middle	High
Cannabinoids	8	12.5	30	8.5	6.2	5.6	-4.4	4.3	4.7
Opiates	22	30	225	4	2.8	2.3	1	12	0.5
Cocaine (metabolite)	22.5	37.5	225	5.9	3.5	1.9	2	-0.8	9.7
Amphetamines	37.5	62.5	375	5.6	4.4	3.4	5.9	5.6	-6
EDDP	37.5	62.5	250	5.7	3.8	n.d.	1.5	1.4	n.d.
Methadone	37.5	62.5	375	3.2	2.8	3.7	9.2	11	4.1
Benzodiazepines	37.5	62.5	250	4.6	2.7	1.2	-4.6	-2.3	1.5
Ethyl glucuronide	75	125	1250	6	3.9	1.4	1	1.3	-3.8

Calibration stability: 28 days for all analytes except amphetamines (21 days)

For onboard calibration stability, the low and middle quality control samples were analyzed with n = 5 repetitions at day 0 and with n = 3 repetitions at day 7, 14, 21, and 28.

repetitions each at five consecutive days.

For cross reactivity, a Roche negative calibrator was spiked with one of the analytes at concentrations yielding noassay values within the calibration range of the assay.

camasmonas	,,
9-Carboxy-11-nor-Δ9 THC-glucuronide	34
11-Hydroxy-Δ9 THC	14
Opiates	
Morphine-3-glucuronide	38
Codeine	99
6-Acetylmorphine	71
Diacetylmorphine	68
Codeine-6-glucuronide	61
Dihydrocodeine	55
Morphine-6-glucuronide	47
Dihydromorphine	38
Thebaine	34
Hydrocodone	22
Hydromorphone	19
Cocaine (metabolite)	
Cocaine	0.94
Ecgoninmethylester	0.003
Amphetamines (and NPS)	
6-(2-Aminopropyl)-benzofurane	150
± MDMA	130
± MDA	110
4-Fluoromethamphetamin	92
5-(2-Aminopropyl)-benzofurane	87
± MBDB-HCl	68
4-Fluoroamphetamin	54
Amphetamine	46
± MDEA	43
Methylphenidate	0.31
Methadone	
Levomepromazine	4.3
EDDP	1.8
EDDP	
Methadone	0.033
Benzodiazepines	
Bromazepam	110
α-Hydroxyalprazolam	92
Flubromazolam	91
Oxazepam	76
α-Hydroxybromazepam	75
Lorazepam	70
7-Aminoflunitrazepam	66
Ethyl glucuronide	
Ethyl sulfate	0.011

Conclusion

The presented kinetic interaction of microparticles in a solution (KIMS) immunoassays on a cobas c 501 provide a new method to reliably detect drug or alcohol consumption in abstinence control programs requiring high sensitivity.

Literature

M.A. Neukamm, A. Bahrami, V. Auwärter, F.M.P. Mehne, E. Höss: Evaluation of KIMS immunoassays on a cobas c 501 analyzer for drugs of abuse and ethyl glucuronide testing in urine for forensic abstinence control, Drug Testing and Analysis 2017, DOI 10.1002/dta.2154

Contact

Merja A. Neukamm, Institute of Forensic Medicine, Forensic Toxicology, Albertstr. 9, D-79104 Freiburg, Germany Fon +49 761 203 6827

merja.neukamm@uniklinik-freiburg.de

