Phase I *in vitro* and *in vivo* metabolism of the designer opioid furanylfentanyl

Maurice Wilde¹, Verena Angerer¹, Bjorn Moosmann¹,², Volker Auwärter¹
1 Institute of Forensic Medicine, Forensic Toxicology, Medical Center – University of Freiburg, Germany
2 Institute of Forensic Medicine, Forensic Toxicology, Kantonsspital St. Gallen, Switzerland

Introduction

Lately, designer opioids (DO) have gained more relevance on the market of new psychoactive substances (NPS). One predominant subgroup of DO are fentanyl derivatives. These compounds pose a particularly high risk to human health because many of these substances are several-fold more potent than morphine. In the present study the *in vitro* phase I metabolism of furanylfentanyl (Fu-F) was investigated using pooled human liver microsomes (pHLM). The results were compared to the *in vivo* phase I metabolites detected in an authentic urine sample to identify the most suitable targets for urine analysis.

Methods

pHLM assay – *in vitro* phase I metabolism

Preparation of urine samples – *in vivo* metabolism

Results & Discussion

In total, 15 *in vivo* phase I metabolites were identified. 4-Anilino-N-phenetylpyridine (4-ANPP, M14), formed by amide hydrolysis, was the most dominant metabolite detected. Additionally, subsequent biotransformations of 4-ANPP (hydroxylation, methylation, formation of dihydridiols) and N-des-alkylation of Fu-F leading to nor-furanylfentanyl (M05) were observed as primary metabolic reactions (Fig. 1). Most of these metabolites could be detected in the *in vitro* assay as well. However, the phase I metabolic profile and the ratios of metabolites showed significant differences in vivo and *in vitro* (all tentatively identified metabolites in *vivo* are shown in ranked order in Fig. 3).

Recently published studies on the metabolism of Fu-F nominate the dihydrido metabolite of the intact Fu-F (M16) as an additional main metabolite (10). This particular metabolite was not present in this case. Most of the metabolites detected in the urine sample originated from further biotransformations of the amide hydrolysis product (M14).

Conclusion

The pHLM assay is a quick and straightforward tool to predict main phase I *in vivo* metabolites of the fentanyl derivatives. As described for other DO before the parent compound Fu-F can be targeted for detection of drug use in urine samples. In addition the postulated main metabolites may serve as additional urinary biomarkers for Fu-F consumption and might provide longer detection windows.

Acknowledgements

This publication has been produced with the financial support of the “Prevention of and Fight against Crime” (SECC) programme of the European Commission (JUST/2013/SEC/DRUGS/A2/6421) and the Deutsche Forschungsgemeinschaft (GI-673/80/2-FFUG).

References

Contact

Maurice Wilde
Medical Center – University of Freiburg Institute of Forensic Medicine Albertstraße 9
79104 Freiburg, Germany
maurice.wilde@uniklinik-freiburg.de